File size: 16,954 Bytes
d61d34c
f1d69c2
 
 
 
 
 
 
 
 
d61d34c
f1d69c2
 
 
 
 
 
d947e9b
f1d69c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f3b622
 
f1d69c2
 
 
4f3b622
ac336de
f1d69c2
 
3e99418
f1d69c2
 
4f3b622
 
 
f1d69c2
 
 
 
 
 
 
0f77f4f
 
 
f1d69c2
 
 
 
 
 
 
 
 
 
 
 
 
ac336de
f1d69c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac336de
3e99418
f1d69c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e99418
 
f1d69c2
3e99418
 
 
 
 
 
 
f1d69c2
3e99418
 
f1d69c2
3e99418
f1d69c2
 
 
 
 
 
 
 
4f3b622
3e99418
f1d69c2
3e99418
f1d69c2
 
4f3b622
 
 
f1d69c2
 
 
 
 
 
 
0f77f4f
 
 
f1d69c2
 
 
4f3b622
f1d69c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac336de
3e99418
f1d69c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e99418
 
f1d69c2
3e99418
 
 
 
 
 
 
f1d69c2
3e99418
 
f1d69c2
3e99418
f1d69c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d61d34c
 
 
 
 
 
 
 
 
fa7d98a
3e99418
fa7d98a
 
d61d34c
 
 
 
fa7d98a
d61d34c
 
2de857a
 
 
 
 
 
d61d34c
2de857a
e24f684
6d3218f
2de857a
 
ac336de
2de857a
 
 
d61d34c
2de857a
 
 
 
 
 
 
 
 
d61d34c
 
 
2de857a
 
 
 
 
 
 
e24f684
6d3218f
2de857a
 
ac336de
2de857a
 
 
d61d34c
 
2de857a
 
 
 
 
 
 
 
 
d61d34c
3a0bff5
d61d34c
 
2de857a
d61d34c
 
3a0bff5
d61d34c
 
2de857a
d61d34c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
import gradio as gr
import os
import shutil
import ffmpeg
from datetime import datetime
from pathlib import Path
import numpy as np
import cv2
import torch
import spaces

from diffusers import AutoencoderKL, DDIMScheduler
from einops import repeat
from omegaconf import OmegaConf
from PIL import Image
from torchvision import transforms
from transformers import CLIPVisionModelWithProjection

from src.models.pose_guider import PoseGuider
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d import UNet3DConditionModel
from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
from src.utils.util import get_fps, read_frames, save_videos_grid, save_pil_imgs

from src.audio_models.model import Audio2MeshModel
from src.utils.audio_util import prepare_audio_feature
from src.utils.mp_utils  import LMKExtractor
from src.utils.draw_util import FaceMeshVisualizer
from src.utils.pose_util import project_points, project_points_with_trans, matrix_to_euler_and_translation, euler_and_translation_to_matrix
from src.utils.crop_face_single import crop_face
from src.audio2vid import get_headpose_temp, smooth_pose_seq
from src.utils.frame_interpolation import init_frame_interpolation_model, batch_images_interpolation_tool


config = OmegaConf.load('./configs/prompts/animation_audio.yaml')
if config.weight_dtype == "fp16":
    weight_dtype = torch.float16
else:
    weight_dtype = torch.float32
    
audio_infer_config = OmegaConf.load(config.audio_inference_config)
# prepare model
a2m_model = Audio2MeshModel(audio_infer_config['a2m_model'])
a2m_model.load_state_dict(torch.load(audio_infer_config['pretrained_model']['a2m_ckpt'], map_location="cpu"), strict=False)
a2m_model.cuda().eval()

vae = AutoencoderKL.from_pretrained(
    config.pretrained_vae_path,
).to("cuda", dtype=weight_dtype)

reference_unet = UNet2DConditionModel.from_pretrained(
    config.pretrained_base_model_path,
    subfolder="unet",
).to(dtype=weight_dtype, device="cuda")

inference_config_path = config.inference_config
infer_config = OmegaConf.load(inference_config_path)
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
    config.pretrained_base_model_path,
    config.motion_module_path,
    subfolder="unet",
    unet_additional_kwargs=infer_config.unet_additional_kwargs,
).to(dtype=weight_dtype, device="cuda")

pose_guider = PoseGuider(noise_latent_channels=320, use_ca=True).to(device="cuda", dtype=weight_dtype) # not use cross attention

image_enc = CLIPVisionModelWithProjection.from_pretrained(
    config.image_encoder_path
).to(dtype=weight_dtype, device="cuda")

sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)

# load pretrained weights
denoising_unet.load_state_dict(
    torch.load(config.denoising_unet_path, map_location="cpu"),
    strict=False,
)
reference_unet.load_state_dict(
    torch.load(config.reference_unet_path, map_location="cpu"),
)
pose_guider.load_state_dict(
    torch.load(config.pose_guider_path, map_location="cpu"),
)

pipe = Pose2VideoPipeline(
    vae=vae,
    image_encoder=image_enc,
    reference_unet=reference_unet,
    denoising_unet=denoising_unet,
    pose_guider=pose_guider,
    scheduler=scheduler,
)
pipe = pipe.to("cuda", dtype=weight_dtype)

# lmk_extractor = LMKExtractor()
# vis = FaceMeshVisualizer()

frame_inter_model = init_frame_interpolation_model()

@spaces.GPU
def audio2video(input_audio, ref_img, headpose_video=None, size=512, steps=25, length=60, seed=42):   
    fps = 30
    cfg = 3.5
    fi_step = 3

    generator = torch.manual_seed(seed)
    
    lmk_extractor = LMKExtractor()
    vis = FaceMeshVisualizer()

    width, height = size, size    

    date_str = datetime.now().strftime("%Y%m%d")
    time_str = datetime.now().strftime("%H%M")
    save_dir_name = f"{time_str}--seed_{seed}-{size}x{size}"

    save_dir = Path(f"a2v_output/{date_str}/{save_dir_name}")
    while os.path.exists(save_dir):
        save_dir = Path(f"a2v_output/{date_str}/{save_dir_name}_{np.random.randint(10000):04d}")
    save_dir.mkdir(exist_ok=True, parents=True)

    ref_image_np = cv2.cvtColor(ref_img, cv2.COLOR_RGB2BGR)
    ref_image_np = crop_face(ref_image_np, lmk_extractor)
    if ref_image_np is None:
        return None, Image.fromarray(ref_img)
    
    ref_image_np = cv2.resize(ref_image_np, (size, size))
    ref_image_pil = Image.fromarray(cv2.cvtColor(ref_image_np, cv2.COLOR_BGR2RGB))
    
    face_result = lmk_extractor(ref_image_np)
    if face_result is None: 
        return None, ref_image_pil

    lmks = face_result['lmks'].astype(np.float32)
    ref_pose = vis.draw_landmarks((ref_image_np.shape[1], ref_image_np.shape[0]), lmks, normed=True)
    
    sample = prepare_audio_feature(input_audio, wav2vec_model_path=audio_infer_config['a2m_model']['model_path'])
    sample['audio_feature'] = torch.from_numpy(sample['audio_feature']).float().cuda()
    sample['audio_feature'] = sample['audio_feature'].unsqueeze(0)

    # inference
    pred = a2m_model.infer(sample['audio_feature'], sample['seq_len'])
    pred = pred.squeeze().detach().cpu().numpy()
    pred = pred.reshape(pred.shape[0], -1, 3)
    pred = pred + face_result['lmks3d']
    
    if headpose_video is not None:
        pose_seq = get_headpose_temp(headpose_video)
    else:
        pose_seq = np.load(config['pose_temp'])
    mirrored_pose_seq = np.concatenate((pose_seq, pose_seq[-2:0:-1]), axis=0)
    cycled_pose_seq = np.tile(mirrored_pose_seq, (sample['seq_len'] // len(mirrored_pose_seq) + 1, 1))[:sample['seq_len']]

    # project 3D mesh to 2D landmark
    projected_vertices = project_points(pred, face_result['trans_mat'], cycled_pose_seq, [height, width])

    pose_images = []
    for i, verts in enumerate(projected_vertices):
        lmk_img = vis.draw_landmarks((width, height), verts, normed=False)
        pose_images.append(lmk_img)

    pose_list = []
    # pose_tensor_list = []

    # pose_transform = transforms.Compose(
    #     [transforms.Resize((height, width)), transforms.ToTensor()]
    # )
    args_L = len(pose_images) if length==0 or length > len(pose_images) else length
    args_L = min(args_L, 90)
    for pose_image_np in pose_images[: args_L : fi_step]:
        # pose_image_pil = Image.fromarray(cv2.cvtColor(pose_image_np, cv2.COLOR_BGR2RGB))
        # pose_tensor_list.append(pose_transform(pose_image_pil))
        pose_image_np = cv2.resize(pose_image_np,  (width, height))
        pose_list.append(pose_image_np)
    
    pose_list = np.array(pose_list)
    
    video_length = len(pose_list)

    video = pipe(
        ref_image_pil,
        pose_list,
        ref_pose,
        width,
        height,
        video_length,
        steps,
        cfg,
        generator=generator,
    ).videos
    
    video = batch_images_interpolation_tool(video, frame_inter_model, inter_frames=fi_step-1)

    save_path = f"{save_dir}/{size}x{size}_{time_str}_noaudio.mp4"
    save_videos_grid(
        video,
        save_path,
        n_rows=1,
        fps=fps,
    )
    
    # save_path = f"{save_dir}/{size}x{size}_{time_str}_noaudio"
    # save_pil_imgs(video, save_path)
    
    # save_path = batch_images_interpolation_tool(save_path, frame_inter_model, int(fps))
    
    stream = ffmpeg.input(save_path)
    audio = ffmpeg.input(input_audio)
    ffmpeg.output(stream.video, audio.audio, save_path.replace('_noaudio.mp4', '.mp4'), vcodec='copy', acodec='aac', shortest=None).run()
    os.remove(save_path)
    
    return save_path.replace('_noaudio.mp4', '.mp4'), ref_image_pil

@spaces.GPU
def video2video(ref_img, source_video, size=512, steps=25, length=60, seed=42):
    cfg = 3.5
    fi_step = 3
    
    generator = torch.manual_seed(seed)
    
    lmk_extractor = LMKExtractor()
    vis = FaceMeshVisualizer()

    width, height = size, size

    date_str = datetime.now().strftime("%Y%m%d")
    time_str = datetime.now().strftime("%H%M")
    save_dir_name = f"{time_str}--seed_{seed}-{size}x{size}"

    save_dir = Path(f"v2v_output/{date_str}/{save_dir_name}")
    while os.path.exists(save_dir):
        save_dir = Path(f"v2v_output/{date_str}/{save_dir_name}_{np.random.randint(10000):04d}")
    save_dir.mkdir(exist_ok=True, parents=True)
    
    ref_image_np = cv2.cvtColor(ref_img, cv2.COLOR_RGB2BGR)
    # ref_image_np = crop_face(ref_image_np, lmk_extractor)
    if ref_image_np is None:
        return None, Image.fromarray(ref_img)
    
    ref_image_np = cv2.resize(ref_image_np, (size, size))
    ref_image_pil = Image.fromarray(cv2.cvtColor(ref_image_np, cv2.COLOR_BGR2RGB))
    
    face_result = lmk_extractor(ref_image_np)
    if face_result is None: 
        return None, ref_image_pil
    
    lmks = face_result['lmks'].astype(np.float32)
    ref_pose = vis.draw_landmarks((ref_image_np.shape[1], ref_image_np.shape[0]), lmks, normed=True)

    source_images = read_frames(source_video)
    src_fps = get_fps(source_video)
    pose_transform = transforms.Compose(
        [transforms.Resize((height, width)), transforms.ToTensor()]
    )
    
    step = 1
    if src_fps == 60:
        src_fps = 30
        step = 2
    
    pose_trans_list = []
    verts_list = []
    bs_list = []
    args_L = len(source_images) if length==0 or length*step > len(source_images) else length*step
    args_L = min(args_L, 90*step)
    for src_image_pil in source_images[: args_L : step*fi_step]:
        src_img_np = cv2.cvtColor(np.array(src_image_pil), cv2.COLOR_RGB2BGR)
        frame_height, frame_width, _ = src_img_np.shape
        src_img_result = lmk_extractor(src_img_np)
        if src_img_result is None:
            break
        pose_trans_list.append(src_img_result['trans_mat'])
        verts_list.append(src_img_result['lmks3d'])
        bs_list.append(src_img_result['bs'])

    trans_mat_arr = np.array(pose_trans_list)
    verts_arr = np.array(verts_list)
    bs_arr = np.array(bs_list)
    min_bs_idx = np.argmin(bs_arr.sum(1))
    
    # compute delta pose
    pose_arr = np.zeros([trans_mat_arr.shape[0], 6])

    for i in range(pose_arr.shape[0]):
        euler_angles, translation_vector = matrix_to_euler_and_translation(trans_mat_arr[i]) # real pose of source
        pose_arr[i, :3] =  euler_angles
        pose_arr[i, 3:6] =  translation_vector
    
    init_tran_vec = face_result['trans_mat'][:3, 3] # init translation of tgt
    pose_arr[:, 3:6] = pose_arr[:, 3:6] - pose_arr[0, 3:6] + init_tran_vec # (relative translation of source) + (init translation of tgt)

    pose_arr_smooth = smooth_pose_seq(pose_arr, window_size=3)
    pose_mat_smooth = [euler_and_translation_to_matrix(pose_arr_smooth[i][:3], pose_arr_smooth[i][3:6]) for i in range(pose_arr_smooth.shape[0])]    
    pose_mat_smooth = np.array(pose_mat_smooth)   

    # face retarget
    verts_arr = verts_arr - verts_arr[min_bs_idx] + face_result['lmks3d']
    # project 3D mesh to 2D landmark
    projected_vertices = project_points_with_trans(verts_arr, pose_mat_smooth, [frame_height, frame_width])
    
    pose_list = []
    for i, verts in enumerate(projected_vertices):
        lmk_img = vis.draw_landmarks((frame_width, frame_height), verts, normed=False)
        pose_image_np = cv2.resize(lmk_img,  (width, height))
        pose_list.append(pose_image_np)
    
    pose_list = np.array(pose_list)
    
    video_length = len(pose_list)

    video = pipe(
        ref_image_pil,
        pose_list,
        ref_pose,
        width,
        height,
        video_length,
        steps,
        cfg,
        generator=generator,
    ).videos
    
    video = batch_images_interpolation_tool(video, frame_inter_model, inter_frames=fi_step-1)

    save_path = f"{save_dir}/{size}x{size}_{time_str}_noaudio.mp4"
    save_videos_grid(
        video,
        save_path,
        n_rows=1,
        fps=src_fps,
    )
    
    # save_path = f"{save_dir}/{size}x{size}_{time_str}_noaudio"
    # save_pil_imgs(video, save_path)
    
    # save_path = batch_images_interpolation_tool(save_path, frame_inter_model, int(src_fps))
    
    audio_output = f'{save_dir}/audio_from_video.aac'
    # extract audio
    try:
        ffmpeg.input(source_video).output(audio_output, acodec='copy').run()
        # merge audio and video
        stream = ffmpeg.input(save_path)
        audio = ffmpeg.input(audio_output)
        ffmpeg.output(stream.video, audio.audio, save_path.replace('_noaudio.mp4', '.mp4'), vcodec='copy', acodec='aac', shortest=None).run()
    
        os.remove(save_path)
        os.remove(audio_output)
    except:
        shutil.move(
            save_path,
            save_path.replace('_noaudio.mp4', '.mp4')
        )
    
    return save_path.replace('_noaudio.mp4', '.mp4'), ref_image_pil


################# GUI ################

title = r"""
<h1>AniPortrait</h1>
"""

description = r"""
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/Zejun-Yang/AniPortrait' target='_blank'><b>AniPortrait: Audio-Driven Synthesis of Photorealistic Portrait Animations</b></a>.<br>
"""

tips = r"""
Here is an accelerated version of AniPortrait. Due to limitations in computing power, the wait time will be quite long. Please utilize the source code to experience the full performance.
"""

with gr.Blocks() as demo:
    
    gr.Markdown(title)
    gr.Markdown(description)
    gr.Markdown(tips)
    
    with gr.Tab("Audio2video"):
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    a2v_input_audio = gr.Audio(sources=["upload", "microphone"], type="filepath", editable=True, label="Input audio", interactive=True)
                    a2v_ref_img = gr.Image(label="Upload reference image", sources="upload")
                    a2v_headpose_video = gr.Video(label="Option: upload head pose reference video", sources="upload")

                with gr.Row():
                    a2v_size_slider = gr.Slider(minimum=256, maximum=512, step=8, value=384, label="Video size (-W & -H)")
                    a2v_step_slider = gr.Slider(minimum=5, maximum=20, step=1, value=15, label="Steps (--steps)")
                
                with gr.Row():
                    a2v_length = gr.Slider(minimum=0, maximum=90, step=1, value=30, label="Length (-L)")
                    a2v_seed = gr.Number(value=42, label="Seed (--seed)")
                
                a2v_botton = gr.Button("Generate", variant="primary")
            a2v_output_video = gr.PlayableVideo(label="Result", interactive=False)
        
        gr.Examples(
            examples=[
                ["configs/inference/audio/lyl.wav", "configs/inference/ref_images/Aragaki.png", None],
                ["configs/inference/audio/lyl.wav", "configs/inference/ref_images/solo.png", None],
                ["configs/inference/audio/lyl.wav", "configs/inference/ref_images/lyl.png", "configs/inference/head_pose_temp/pose_ref_video.mp4"],
                ],
            inputs=[a2v_input_audio, a2v_ref_img, a2v_headpose_video],
        )
            
    
    with gr.Tab("Video2video"):
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    v2v_ref_img = gr.Image(label="Upload reference image", sources="upload")
                    v2v_source_video = gr.Video(label="Upload source video", sources="upload")
                
                with gr.Row():
                    v2v_size_slider = gr.Slider(minimum=256, maximum=512, step=8, value=384, label="Video size (-W & -H)")
                    v2v_step_slider = gr.Slider(minimum=5, maximum=20, step=1, value=15, label="Steps (--steps)")
                
                with gr.Row():
                    v2v_length = gr.Slider(minimum=0, maximum=90, step=1, value=30, label="Length (-L)")
                    v2v_seed = gr.Number(value=42, label="Seed (--seed)")
                
                v2v_botton = gr.Button("Generate", variant="primary")
            v2v_output_video = gr.PlayableVideo(label="Result", interactive=False)
            
        gr.Examples(
            examples=[
                ["configs/inference/ref_images/Aragaki.png", "configs/inference/video/Aragaki_song.mp4"],
                ["configs/inference/ref_images/solo.png", "configs/inference/video/Aragaki_song.mp4"],
                ["configs/inference/ref_images/lyl.png", "configs/inference/head_pose_temp/pose_ref_video.mp4"],
                ],
            inputs=[v2v_ref_img, v2v_source_video, a2v_headpose_video],
        )
            
    a2v_botton.click(
        fn=audio2video,
        inputs=[a2v_input_audio, a2v_ref_img, a2v_headpose_video,
                a2v_size_slider, a2v_step_slider, a2v_length, a2v_seed], 
        outputs=[a2v_output_video, a2v_ref_img]
    )
    v2v_botton.click(
        fn=video2video,
        inputs=[v2v_ref_img, v2v_source_video,
                v2v_size_slider, v2v_step_slider, v2v_length, v2v_seed], 
        outputs=[v2v_output_video, v2v_ref_img]
    )
    
demo.launch()