Spaces:
Running
on
Zero
Running
on
Zero
import math | |
import numpy as np | |
from scipy.spatial.transform import Rotation as R | |
def create_perspective_matrix(aspect_ratio): | |
kDegreesToRadians = np.pi / 180. | |
near = 1 | |
far = 10000 | |
perspective_matrix = np.zeros(16, dtype=np.float32) | |
# Standard perspective projection matrix calculations. | |
f = 1.0 / np.tan(kDegreesToRadians * 63 / 2.) | |
denom = 1.0 / (near - far) | |
perspective_matrix[0] = f / aspect_ratio | |
perspective_matrix[5] = f | |
perspective_matrix[10] = (near + far) * denom | |
perspective_matrix[11] = -1. | |
perspective_matrix[14] = 1. * far * near * denom | |
# If the environment's origin point location is in the top left corner, | |
# then skip additional flip along Y-axis is required to render correctly. | |
perspective_matrix[5] *= -1. | |
return perspective_matrix | |
def project_points(points_3d, transformation_matrix, pose_vectors, image_shape): | |
P = create_perspective_matrix(image_shape[1] / image_shape[0]).reshape(4, 4).T | |
L, N, _ = points_3d.shape | |
projected_points = np.zeros((L, N, 2)) | |
for i in range(L): | |
points_3d_frame = points_3d[i] | |
ones = np.ones((points_3d_frame.shape[0], 1)) | |
points_3d_homogeneous = np.hstack([points_3d_frame, ones]) | |
transformed_points = points_3d_homogeneous @ (transformation_matrix @ euler_and_translation_to_matrix(pose_vectors[i][:3], pose_vectors[i][3:])).T @ P | |
projected_points_frame = transformed_points[:, :2] / transformed_points[:, 3, np.newaxis] # -1 ~ 1 | |
projected_points_frame[:, 0] = (projected_points_frame[:, 0] + 1) * 0.5 * image_shape[1] | |
projected_points_frame[:, 1] = (projected_points_frame[:, 1] + 1) * 0.5 * image_shape[0] | |
projected_points[i] = projected_points_frame | |
return projected_points | |
def project_points_with_trans(points_3d, transformation_matrix, image_shape): | |
P = create_perspective_matrix(image_shape[1] / image_shape[0]).reshape(4, 4).T | |
L, N, _ = points_3d.shape | |
projected_points = np.zeros((L, N, 2)) | |
for i in range(L): | |
points_3d_frame = points_3d[i] | |
ones = np.ones((points_3d_frame.shape[0], 1)) | |
points_3d_homogeneous = np.hstack([points_3d_frame, ones]) | |
transformed_points = points_3d_homogeneous @ transformation_matrix[i].T @ P | |
projected_points_frame = transformed_points[:, :2] / transformed_points[:, 3, np.newaxis] # -1 ~ 1 | |
projected_points_frame[:, 0] = (projected_points_frame[:, 0] + 1) * 0.5 * image_shape[1] | |
projected_points_frame[:, 1] = (projected_points_frame[:, 1] + 1) * 0.5 * image_shape[0] | |
projected_points[i] = projected_points_frame | |
return projected_points | |
def euler_and_translation_to_matrix(euler_angles, translation_vector): | |
rotation = R.from_euler('xyz', euler_angles, degrees=True) | |
rotation_matrix = rotation.as_matrix() | |
matrix = np.eye(4) | |
matrix[:3, :3] = rotation_matrix | |
matrix[:3, 3] = translation_vector | |
return matrix | |
def matrix_to_euler_and_translation(matrix): | |
rotation_matrix = matrix[:3, :3] | |
translation_vector = matrix[:3, 3] | |
rotation = R.from_matrix(rotation_matrix) | |
euler_angles = rotation.as_euler('xyz', degrees=True) | |
return euler_angles, translation_vector |