import cv2 import numpy as np from modules.keypoints import BODY_PARTS_KPT_IDS, BODY_PARTS_PAF_IDS from modules.one_euro_filter import OneEuroFilter class Pose: num_kpts = 18 kpt_names = ['nose', 'neck', 'r_sho', 'r_elb', 'r_wri', 'l_sho', 'l_elb', 'l_wri', 'r_hip', 'r_knee', 'r_ank', 'l_hip', 'l_knee', 'l_ank', 'r_eye', 'l_eye', 'r_ear', 'l_ear'] sigmas = np.array([.26, .79, .79, .72, .62, .79, .72, .62, 1.07, .87, .89, 1.07, .87, .89, .25, .25, .35, .35], dtype=np.float32) / 10.0 vars = (sigmas * 2) ** 2 last_id = -1 color = [0, 224, 255] def __init__(self, keypoints, confidence): super().__init__() self.keypoints = keypoints self.confidence = confidence self.bbox = Pose.get_bbox(self.keypoints) self.id = None self.filters = [[OneEuroFilter(), OneEuroFilter()] for _ in range(Pose.num_kpts)] @staticmethod def get_bbox(keypoints): found_keypoints = np.zeros((np.count_nonzero(keypoints[:, 0] != -1), 2), dtype=np.int32) found_kpt_id = 0 for kpt_id in range(Pose.num_kpts): if keypoints[kpt_id, 0] == -1: continue found_keypoints[found_kpt_id] = keypoints[kpt_id] found_kpt_id += 1 bbox = cv2.boundingRect(found_keypoints) return bbox def update_id(self, id=None): self.id = id if self.id is None: self.id = Pose.last_id + 1 Pose.last_id += 1 def draw(self, img): assert self.keypoints.shape == (Pose.num_kpts, 2) for part_id in range(len(BODY_PARTS_PAF_IDS) - 2): kpt_a_id = BODY_PARTS_KPT_IDS[part_id][0] global_kpt_a_id = self.keypoints[kpt_a_id, 0] if global_kpt_a_id != -1: x_a, y_a = self.keypoints[kpt_a_id] cv2.circle(img, (int(x_a), int(y_a)), 3, Pose.color, -1) kpt_b_id = BODY_PARTS_KPT_IDS[part_id][1] global_kpt_b_id = self.keypoints[kpt_b_id, 0] if global_kpt_b_id != -1: x_b, y_b = self.keypoints[kpt_b_id] cv2.circle(img, (int(x_b), int(y_b)), 3, Pose.color, -1) if global_kpt_a_id != -1 and global_kpt_b_id != -1: cv2.line(img, (int(x_a), int(y_a)), (int(x_b), int(y_b)), Pose.color, 2) def get_similarity(a, b, threshold=0.5): num_similar_kpt = 0 for kpt_id in range(Pose.num_kpts): if a.keypoints[kpt_id, 0] != -1 and b.keypoints[kpt_id, 0] != -1: distance = np.sum((a.keypoints[kpt_id] - b.keypoints[kpt_id]) ** 2) area = max(a.bbox[2] * a.bbox[3], b.bbox[2] * b.bbox[3]) similarity = np.exp(-distance / (2 * (area + np.spacing(1)) * Pose.vars[kpt_id])) if similarity > threshold: num_similar_kpt += 1 return num_similar_kpt def track_poses(previous_poses, current_poses, threshold=3, smooth=False): """Propagate poses ids from previous frame results. Id is propagated, if there are at least `threshold` similar keypoints between pose from previous frame and current. If correspondence between pose on previous and current frame was established, pose keypoints are smoothed. :param previous_poses: poses from previous frame with ids :param current_poses: poses from current frame to assign ids :param threshold: minimal number of similar keypoints between poses :param smooth: smooth pose keypoints between frames :return: None """ current_poses = sorted(current_poses, key=lambda pose: pose.confidence, reverse=True) # match confident poses first mask = np.ones(len(previous_poses), dtype=np.int32) for current_pose in current_poses: best_matched_id = None best_matched_pose_id = None best_matched_iou = 0 for id, previous_pose in enumerate(previous_poses): if not mask[id]: continue iou = get_similarity(current_pose, previous_pose) if iou > best_matched_iou: best_matched_iou = iou best_matched_pose_id = previous_pose.id best_matched_id = id if best_matched_iou >= threshold: mask[best_matched_id] = 0 else: # pose not similar to any previous best_matched_pose_id = None current_pose.update_id(best_matched_pose_id) if smooth: for kpt_id in range(Pose.num_kpts): if current_pose.keypoints[kpt_id, 0] == -1: continue # reuse filter if previous pose has valid filter if (best_matched_pose_id is not None and previous_poses[best_matched_id].keypoints[kpt_id, 0] != -1): current_pose.filters[kpt_id] = previous_poses[best_matched_id].filters[kpt_id] current_pose.keypoints[kpt_id, 0] = current_pose.filters[kpt_id][0](current_pose.keypoints[kpt_id, 0]) current_pose.keypoints[kpt_id, 1] = current_pose.filters[kpt_id][1](current_pose.keypoints[kpt_id, 1]) current_pose.bbox = Pose.get_bbox(current_pose.keypoints)