Update app.py
Browse files
app.py
CHANGED
@@ -42,8 +42,16 @@ if video_file is not None:
|
|
42 |
tfile = tempfile.NamedTemporaryFile(delete=False)
|
43 |
tfile.write(video_file.read())
|
44 |
|
|
|
45 |
# Open video capture using temporary file path
|
46 |
cap = cv2.VideoCapture(tfile.name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
alert_set = set(alerting_classes.keys())
|
48 |
alert_set.remove(0)
|
49 |
|
@@ -67,6 +75,9 @@ if video_file is not None:
|
|
67 |
# st.warning("Can't receive frame (stream end?). Exiting ...")
|
68 |
break
|
69 |
|
|
|
|
|
|
|
70 |
if frame_counter % 4 == 0: # Perform inference on every 4th frame
|
71 |
alert_flag = False
|
72 |
alert_reason = []
|
@@ -127,12 +138,9 @@ if video_file is not None:
|
|
127 |
cap.release()
|
128 |
tfile.close()
|
129 |
|
130 |
-
# Display frames one by one as a video
|
131 |
-
progress_bar_display = st.progress(0)
|
132 |
for i, frame in enumerate(frames):
|
133 |
video_placeholder.image(frame, channels="BGR", caption="YOLOv8 Inference")
|
134 |
-
# Update display progress bar
|
135 |
-
progress_bar_display.progress((i + 1) / len(frames))
|
136 |
time.sleep(frame_delay)
|
137 |
|
138 |
st.markdown("<hr>", unsafe_allow_html=True)
|
|
|
42 |
tfile = tempfile.NamedTemporaryFile(delete=False)
|
43 |
tfile.write(video_file.read())
|
44 |
|
45 |
+
# Open video capture using temporary file path
|
46 |
# Open video capture using temporary file path
|
47 |
cap = cv2.VideoCapture(tfile.name)
|
48 |
+
original_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
49 |
+
original_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
50 |
+
|
51 |
+
# Set the target width and height based on the conditions
|
52 |
+
target_width = int(original_width * 0.65) if original_width <= 1920 else int(original_width * 0.5)
|
53 |
+
target_height = int(original_height * 0.65) if original_width <= 1920 else int(original_height * 0.5)
|
54 |
+
|
55 |
alert_set = set(alerting_classes.keys())
|
56 |
alert_set.remove(0)
|
57 |
|
|
|
75 |
# st.warning("Can't receive frame (stream end?). Exiting ...")
|
76 |
break
|
77 |
|
78 |
+
# Resize the frame
|
79 |
+
resized_frame = cv2.resize(frame, (target_width, target_height))
|
80 |
+
|
81 |
if frame_counter % 4 == 0: # Perform inference on every 4th frame
|
82 |
alert_flag = False
|
83 |
alert_reason = []
|
|
|
138 |
cap.release()
|
139 |
tfile.close()
|
140 |
|
141 |
+
# Display frames one by one as a video
|
|
|
142 |
for i, frame in enumerate(frames):
|
143 |
video_placeholder.image(frame, channels="BGR", caption="YOLOv8 Inference")
|
|
|
|
|
144 |
time.sleep(frame_delay)
|
145 |
|
146 |
st.markdown("<hr>", unsafe_allow_html=True)
|