File size: 6,468 Bytes
4962437
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
To create a Terraform configuration for deploying the Swarm application on an AWS EC2 instance with a T4 GPU, you would typically need the following resources:

1. **AWS Provider:** This is needed to configure the AWS resources.
2. **AWS Key Pair:** This is required for SSH access to the EC2 instances.
3. **Security Group:** This defines the firewall rules for your instances.
4. **EC2 Instance:** This is where you deploy your application. Be sure to choose an instance type that supports T4 GPUs (like `g4dn.xlarge` for example).
5. **IAM Role and Policy:** These are optional but recommended for managing permissions.

The Terraform configuration file(s) should be written in HashiCorp Configuration Language (HCL). The conventional file extension is `.tf`.

Here's an example of what the Terraform configuration might look like:

```hcl
provider "aws" {
  region = "us-west-2"
}

resource "aws_key_pair" "deployer" {
  key_name   = "deployer-key"
  public_key = file("~/.ssh/id_rsa.pub")
}

resource "aws_security_group" "swarm-sg" {
  name        = "swarm-sg"
  description = "Security group for Swarm app"

  ingress {
    from_port   = 22
    to_port     = 22
    protocol    = "tcp"
    cidr_blocks = ["0.0.0.0/0"]
  }

  ingress {
    from_port   = 8000
    to_port     = 8000
    protocol    = "tcp"
    cidr_blocks = ["0.0.0.0/0"]
  }

  egress {
    from_port   = 0
    to_port     = 0
    protocol    = "-1"
    cidr_blocks = ["0.0.0.0/0"]
  }
}

resource "aws_instance" "swarm" {
  ami           = "ami-0c94855ba95c574c8"  # Update this with the correct AMI ID
  instance_type = "g4dn.xlarge"
  key_name      = aws_key_pair.deployer.key_name

  vpc_security_group_ids = [aws_security_group.swarm-sg.id]

  tags = {
    Name = "SwarmInstance"
  }

  user_data = <<-EOF
              #!/bin/bash
              sudo apt-get update
              sudo apt-get install -y docker.io
              sudo docker pull your_docker_image_name
              sudo docker run -d -p 8000:8000 your_docker_image_name
              EOF
}
```

Please replace the `"ami-0c94855ba95c574c8"` with the correct AMI ID for your desired operating system and `"your_docker_image_name"` with the name of your Docker image.

This is a simple configuration and may not cover all your requirements. You might need to modify this to fit your needs, such as adding persistent storage (EBS volumes), load balancers, auto scaling groups, etc.

Remember to install Terraform and initialize it in your working directory using `terraform init` before running `terraform apply` to create the resources. Also, ensure your AWS credentials are correctly set up in your environment.



Incorporating persistent storage, load balancers, and auto scaling will make our Terraform configuration significantly more complex. Below is a skeleton of what the configuration might look like:

```hcl
provider "aws" {
  region = "us-west-2"
}

data "aws_ami" "ubuntu" {
  most_recent = true

  filter {
    name   = "name"
    values = ["ubuntu/images/hvm-ssd/ubuntu-focal-20.04-amd64-server-*"]
  }

  filter {
    name   = "virtualization-type"
    values = ["hvm"]
  }

  owners = ["099720109477"]
}

resource "aws_key_pair" "deployer" {
  key_name   = "deployer-key"
  public_key = file("~/.ssh/id_rsa.pub")
}

resource "aws_security_group" "swarm-sg" {
  name        = "swarm-sg"
  description = "Security group for Swarm app"

  ingress {
    from_port   = 22
    to_port     = 22
    protocol    = "tcp"
    cidr_blocks = ["0.0.0.0/0"]
  }

  ingress {
    from_port   = 8000
    to_port     = 8000
    protocol    = "tcp"
    cidr_blocks = ["0.0.0.0/0"]
  }

  egress {
    from_port   = 0
    to_port     = 0
    protocol    = "-1"
    cidr_blocks = ["0.0.0.0/0"]
  }
}

resource "aws_launch_configuration" "swarm" {
  name          = "swarm-configuration"
  image_id      = data.aws_ami.ubuntu.id
  instance_type = "g4dn.xlarge"
  key_name      = aws_key_pair.deployer.key_name

  security_groups = [aws_security_group.swarm-sg.id]

  user_data = <<-EOF
              #!/bin/bash
              sudo apt-get update
              sudo apt-get install -y docker.io
              sudo docker pull your_docker_image_name
              sudo docker run -d -p 8000:8000 your_docker_image_name
              EOF

  root_block_device {
    volume_type = "gp2"
    volume_size = 30  # size in GBs
  }

  lifecycle {
    create_before_destroy = true
  }
}

resource "aws_autoscaling_group" "swarm" {
  name_prefix          = "swarm-asg"
  max_size             = 5
  min_size             = 1
  desired_capacity     = 1
  launch_configuration = aws_launch_configuration.swarm.id

  lifecycle {
    create_before_destroy = true
  }
}

resource "aws_elb" "swarm" {
  name    = "swarm-elb"
  subnets = ["subnet-id1", "subnet-id2"]

  listener {
    instance_port     = 8000
    instance_protocol = "http"
    lb_port           = 80
    lb_protocol       = "http"
  }

  health_check {
    healthy_threshold   = 2
    unhealthy_threshold = 2
    timeout             = 3
    target              = "HTTP:8000/"
    interval            = 30
  }

  instances = [aws_instance.swarm.id]

  cross_zone_load_balancing   = true
  idle_timeout                = 400
  connection_draining         = true
  connection_draining_timeout = 400
}
```

In this example, the `aws_launch_configuration` sets up the details

 for launching new instances, including attaching an EBS volume for persistent storage. The `aws_autoscaling_group` uses this configuration to scale instances up and down as required.

The `aws_elb` resource creates a load balancer that distributes incoming traffic across all the instances in the autoscaling group. The `health_check` block inside `aws_elb` is used to check the health of the instances. If an instance fails the health check, it is replaced by the autoscaling group.

Please replace `"subnet-id1"` and `"subnet-id2"` with your actual subnet IDs and `"your_docker_image_name"` with the name of your Docker image.

Again, note that this is a simplified example and may need to be adjusted to suit your particular use case. For instance, this configuration assumes that you are using a single security group for all instances, which might not be the best setup for a real-world scenario.

Before running this Terraform configuration, make sure to initialize Terraform in your working directory using `terraform init`, and ensure that your AWS credentials are correctly set up in your environment.