import gradio as gr import numpy as np import random import torch from diffusers import DiffusionPipeline, StableDiffusionXLBaseModel, StableDiffusionTrainer from transformers import CLIPTextModel, CLIPTokenizer, TrainingArguments from datasets import load_dataset from huggingface_hub import HfApi, HfFolder, Repository device = "cuda" if torch.cuda.is_available() else "cpu" if torch.cuda.is_available(): torch.cuda.max_memory_allocated(device=device) pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) pipe.enable_xformers_memory_efficient_attention() pipe = pipe.to(device) else: pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True) pipe = pipe.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator ).images[0] return image def get_latest_version(repo_id): api = HfApi() repo_info = api.repo_info(repo_id) versions = [tag.name for tag in repo_info.tags] if not versions: return "v_0.0" latest_version = sorted(versions)[-1] return latest_version def increment_version(version): major, minor = map(int, version.split('_')[1:]) minor += 1 return f"v_{major}.{minor}" def train_model(train_data_path, output_dir, num_train_epochs, per_device_train_batch_size, learning_rate): tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") base_model = StableDiffusionXLBaseModel.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") dataset = load_dataset('imagefolder', data_dir=train_data_path) training_args = TrainingArguments( output_dir=output_dir, num_train_epochs=num_train_epochs, per_device_train_batch_size=per_device_train_batch_size, learning_rate=learning_rate, logging_dir="./logs", logging_steps=10, ) trainer = StableDiffusionTrainer( model=base_model, args=training_args, train_dataset=dataset['train'], tokenizer=tokenizer, ) trainer.train() base_model.save_pretrained(output_dir) # Publish the model repo_id = "ZennyKenny/stable-diffusion-xl-base-1.0_NatalieDiffusion" latest_version = get_latest_version(repo_id) new_version = increment_version(latest_version) api = HfApi() token = HfFolder.get_token() repo = Repository(output_dir, clone_from=repo_id, token=token) repo.git_tag(new_version) repo.push_tag(new_version) return f"Training complete. Model saved to {output_dir} and published as version {new_version}." examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ if torch.cuda.is_available(): power_device = "GPU" else: power_device = "CPU" with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # Text-to-Image Gradio Template Currently running on {power_device}. """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=0.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=12, step=1, value=2, ) gr.Examples( examples=examples, inputs=[prompt] ) # Add new section for training the model with gr.Accordion("Training Settings", open=False): train_data_path = gr.Text( label="Training Data Path", placeholder="Enter the path to your training data", ) output_dir = gr.Text( label="Output Directory", placeholder="Enter the output directory for the trained model", ) num_train_epochs = gr.Slider( label="Number of Training Epochs", minimum=1, maximum=10, step=1, value=3, ) per_device_train_batch_size = gr.Slider( label="Batch Size per Device", minimum=1, maximum=16, step=1, value=4, ) learning_rate = gr.Slider( label="Learning Rate", minimum=1e-5, maximum=1e-3, step=1e-5, value=5e-5, ) train_button = gr.Button("Train Model") train_result = gr.Text(label="Training Result", show_label=False) train_button.click( fn=train_model, inputs=[train_data_path, output_dir, num_train_epochs, per_device_train_batch_size, learning_rate], outputs=[train_result], ) run_button.click( fn=infer, inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs=[result] ) demo.queue().launch()