Kamand commited on
Commit
af5fad8
1 Parent(s): 72d27db

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -30
app.py CHANGED
@@ -212,6 +212,7 @@ cosine_sim = linear_kernel(tfidf_matrix, tfidf_matrix)
212
 
213
 
214
  smd = smd.reset_index()
 
215
 
216
 
217
  # In[24]:
@@ -224,25 +225,10 @@ indices = pd.Series(smd.index, index=smd['title'])
224
  # In[25]:
225
 
226
 
227
- tfidf_matrix.shape
228
 
229
 
230
- # In[34]:
231
 
232
 
233
- def get_recommendations(title):
234
- if indices[title].shape ==():
235
- idx = indices[title]
236
- else:
237
- idx = indices[title][0]
238
- sim = cosine_sim
239
- sim_scores = list(enumerate(sim[idx]))
240
- sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
241
- sim_scores = sim_scores[1:5]
242
- title_idx= [l[0] for l in sim_scores]
243
- title_rec = [titles[i] for i in title_idx]
244
- return title_rec
245
-
246
 
247
  # In[28]:
248
 
@@ -253,7 +239,6 @@ def get_recommendations(title):
253
  # In[27]:
254
 
255
 
256
- #get_recommendations('The Dark Knight',cosine_sim)
257
 
258
 
259
  # <b> <font size="3"> Adding the metadata to the rec system <font> <b>
@@ -388,6 +373,7 @@ cosine_sim2 = linear_kernel(count_matrix, count_matrix)
388
 
389
 
390
  smd = smd.reset_index()
 
391
  titles = smd['title']
392
  indices = pd.Series(smd.index, index=smd['title'])
393
 
@@ -401,20 +387,7 @@ indices = pd.Series(smd.index, index=smd['title'])
401
  # In[60]:
402
 
403
 
404
- def get_recommendations(title,sim):
405
- if indices[title].shape ==():
406
- idx = indices[title]
407
- else:
408
- idx = indices[title][0]
409
- sim_scores = list(enumerate(sim[idx]))
410
- sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
411
- sim_scores = sim_scores[1:31]
412
- title_idx= [l[0] for l in sim_scores]
413
- title_rec = [titles[i] for i in title_idx]
414
- return title_rec
415
-
416
 
417
- # In[62]:
418
 
419
 
420
  #get_recommendations('The Avengers',cosine_sim2)
@@ -426,6 +399,7 @@ def get_recommendations(title,sim):
426
 
427
 
428
  def improved_recommendations(title):
 
429
  idx = indices[title]
430
  sim_scores = list(enumerate(cosine_sim2[idx]))
431
  sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
@@ -442,7 +416,7 @@ def improved_recommendations(title):
442
  qualified['vote_average'] = qualified['vote_average'].astype('int')
443
  qualified['wr'] = qualified.apply(weighted_rating, axis=1)
444
  qualified = qualified.sort_values('wr', ascending=False).head(10)
445
- return list(qualified['title'])
446
 
447
 
448
  # In[76]:
 
212
 
213
 
214
  smd = smd.reset_index()
215
+ smd['title'] = smd['title'].apply(lambda x: str.lower(x))
216
 
217
 
218
  # In[24]:
 
225
  # In[25]:
226
 
227
 
 
228
 
229
 
 
230
 
231
 
 
 
 
 
 
 
 
 
 
 
 
 
 
232
 
233
  # In[28]:
234
 
 
239
  # In[27]:
240
 
241
 
 
242
 
243
 
244
  # <b> <font size="3"> Adding the metadata to the rec system <font> <b>
 
373
 
374
 
375
  smd = smd.reset_index()
376
+ smd['title'] = smd['title'].apply(lambda x: str.lower(x))
377
  titles = smd['title']
378
  indices = pd.Series(smd.index, index=smd['title'])
379
 
 
387
  # In[60]:
388
 
389
 
 
 
 
 
 
 
 
 
 
 
 
 
390
 
 
391
 
392
 
393
  #get_recommendations('The Avengers',cosine_sim2)
 
399
 
400
 
401
  def improved_recommendations(title):
402
+ title = str.lower(title)
403
  idx = indices[title]
404
  sim_scores = list(enumerate(cosine_sim2[idx]))
405
  sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
 
416
  qualified['vote_average'] = qualified['vote_average'].astype('int')
417
  qualified['wr'] = qualified.apply(weighted_rating, axis=1)
418
  qualified = qualified.sort_values('wr', ascending=False).head(10)
419
+ return list(qualified['title'].apply(lambda x: x.title()))
420
 
421
 
422
  # In[76]: