Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,482 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[2]:
|
5 |
+
|
6 |
+
|
7 |
+
get_ipython().run_line_magic('matplotlib', 'inline')
|
8 |
+
import pandas as pd
|
9 |
+
import numpy as np
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import gradio as gr
|
12 |
+
from scipy import stats
|
13 |
+
from ast import literal_eval
|
14 |
+
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
|
15 |
+
from sklearn.metrics.pairwise import linear_kernel, cosine_similarity
|
16 |
+
from nltk.stem.snowball import SnowballStemmer
|
17 |
+
from nltk.stem.wordnet import WordNetLemmatizer
|
18 |
+
from nltk.corpus import wordnet
|
19 |
+
from surprise import Reader, Dataset, SVD
|
20 |
+
import warnings; warnings.simplefilter('ignore')
|
21 |
+
import surprise
|
22 |
+
|
23 |
+
|
24 |
+
# In[3]:
|
25 |
+
|
26 |
+
|
27 |
+
path = 'C:/HW/Spring 2022/Deep learning/Project/all csvs'
|
28 |
+
|
29 |
+
|
30 |
+
# In[4]:
|
31 |
+
|
32 |
+
|
33 |
+
md = pd.read_csv(path+'/movies_metadata.csv')
|
34 |
+
md.head(2)
|
35 |
+
|
36 |
+
|
37 |
+
# <b> Simple rec system <b>
|
38 |
+
#
|
39 |
+
|
40 |
+
# In[5]:
|
41 |
+
|
42 |
+
|
43 |
+
md['genres'] = md['genres'].fillna('[]').apply(literal_eval).apply(lambda x: [i['name'] for i in x] if isinstance(x, list) else [])
|
44 |
+
# fillna replaces NaN values with '[]'
|
45 |
+
# Get just the genres
|
46 |
+
|
47 |
+
|
48 |
+
# Weighted Rating (WR) = (v/(v+m)*R)+(m/(v+m).C)
|
49 |
+
#
|
50 |
+
# where,
|
51 |
+
#
|
52 |
+
# [1] v is the number of votes for the movie <br>
|
53 |
+
# [2] m is the minimum votes required to be listed in the chart <br>
|
54 |
+
# [3] R is the average rating of the movie <br>
|
55 |
+
# [4] C is the mean vote across the whole report <br>
|
56 |
+
|
57 |
+
# In[6]:
|
58 |
+
|
59 |
+
|
60 |
+
vote_counts = md[md['vote_count'].notnull()]['vote_count'].astype(int)
|
61 |
+
vote_average = md[md['vote_average'].notnull()]['vote_average'].astype(int)
|
62 |
+
|
63 |
+
C = np.mean(vote_average)
|
64 |
+
m = vote_counts.quantile(0.95)
|
65 |
+
|
66 |
+
print('The average rating for these movies is: ',C)
|
67 |
+
print('The minimum votes required to be listed in the chart: ',m)
|
68 |
+
|
69 |
+
|
70 |
+
# In[7]:
|
71 |
+
|
72 |
+
|
73 |
+
# Keeping the year from the date
|
74 |
+
md['year'] = pd.to_datetime(md['release_date'], errors='coerce').apply(lambda x: str(x).split('-')[0] if x != np.nan else np.nan)
|
75 |
+
|
76 |
+
|
77 |
+
# In[8]:
|
78 |
+
|
79 |
+
|
80 |
+
md['popularity']
|
81 |
+
|
82 |
+
|
83 |
+
# In[9]:
|
84 |
+
|
85 |
+
|
86 |
+
qualified = md[(md['vote_count'] >= m) & (md['vote_count'].notnull()) & (md['vote_average'].notnull())][['title', 'year', 'vote_count', 'vote_average', 'popularity', 'genres']]
|
87 |
+
|
88 |
+
|
89 |
+
# In[10]:
|
90 |
+
|
91 |
+
|
92 |
+
qualified['vote_count'] = qualified['vote_count'].astype(int)
|
93 |
+
qualified['vote_average'] = qualified['vote_average'].astype(int)
|
94 |
+
qualified.shape
|
95 |
+
|
96 |
+
|
97 |
+
# In[11]:
|
98 |
+
|
99 |
+
|
100 |
+
def weighted_rating(x):
|
101 |
+
v = x['vote_count']
|
102 |
+
R = x['vote_average']
|
103 |
+
return (v/(v+m) * R) + (m/(m+v) * C)
|
104 |
+
|
105 |
+
|
106 |
+
# In[12]:
|
107 |
+
|
108 |
+
|
109 |
+
qualified['wr'] = qualified.apply(weighted_rating, axis=1)
|
110 |
+
qualified = qualified.sort_values('wr',ascending = False).head(250)
|
111 |
+
|
112 |
+
|
113 |
+
# In[13]:
|
114 |
+
|
115 |
+
|
116 |
+
s = md.apply(lambda x: pd.Series(x['genres']),axis=1).stack().reset_index(level=1, drop=True)
|
117 |
+
s.name = 'genre'
|
118 |
+
gen_md = md.drop('genres', axis=1).join(s)
|
119 |
+
|
120 |
+
|
121 |
+
# In[14]:
|
122 |
+
|
123 |
+
|
124 |
+
def build_chart(genre, percentile=0.85):
|
125 |
+
|
126 |
+
df = gen_md[gen_md['genre'] == genre] # Getting gen_md for specific genres
|
127 |
+
vote_counts = df[df['vote_count'].notnull()]['vote_count'].astype('int')
|
128 |
+
vote_averages = df[df['vote_average'].notnull()]['vote_average'].astype('int')
|
129 |
+
C = vote_averages.mean()
|
130 |
+
m = vote_counts.quantile(percentile)
|
131 |
+
|
132 |
+
|
133 |
+
qualified = df[(df['vote_count'] >= m) & (df['vote_count'].notnull()) & (df['vote_average'].notnull())][['title', 'year', 'vote_count', 'vote_average', 'popularity']]
|
134 |
+
qualified['vote_count'] = qualified['vote_count'].astype('int')
|
135 |
+
qualified['vote_average'] = qualified['vote_average'].astype('int')
|
136 |
+
|
137 |
+
qualified['wr'] = qualified.apply(lambda x: (x['vote_count']/(x['vote_count']+m) * x['vote_average']) + (m/(m+x['vote_count']) * C), axis=1)
|
138 |
+
qualified = qualified.sort_values('wr', ascending=False).head(250)
|
139 |
+
|
140 |
+
return qualified
|
141 |
+
|
142 |
+
|
143 |
+
# In[15]:
|
144 |
+
|
145 |
+
|
146 |
+
build_chart('Romance')
|
147 |
+
|
148 |
+
|
149 |
+
# <b> Content Based Recommender/ Filtering <b>
|
150 |
+
#
|
151 |
+
# In this section we personalize the movie recommendations, Content Based Recommenders based on:
|
152 |
+
#
|
153 |
+
# Movie Overviews and Taglines <br>
|
154 |
+
# Movie Cast, Crew, Keywords and Genre
|
155 |
+
#
|
156 |
+
|
157 |
+
# In[16]:
|
158 |
+
|
159 |
+
|
160 |
+
links = pd.read_csv(path+'/links_small.csv')
|
161 |
+
links = links[links['tmdbId'].notnull()]['tmdbId'].astype(int)
|
162 |
+
|
163 |
+
|
164 |
+
# In[17]:
|
165 |
+
|
166 |
+
|
167 |
+
md = md.drop([19730, 29503, 35587])
|
168 |
+
|
169 |
+
|
170 |
+
# In[18]:
|
171 |
+
|
172 |
+
|
173 |
+
md['id'] = md['id'].astype('int')
|
174 |
+
|
175 |
+
|
176 |
+
# In[19]:
|
177 |
+
|
178 |
+
|
179 |
+
# Getting the movies that their IDs exist in "links"
|
180 |
+
smd = md[md['id'].isin(links)]
|
181 |
+
smd.shape
|
182 |
+
|
183 |
+
|
184 |
+
# In[20]:
|
185 |
+
|
186 |
+
|
187 |
+
smd['tagline'] = smd['tagline'].fillna('')
|
188 |
+
smd['description'] = smd['overview'] + smd['tagline']
|
189 |
+
smd['description'] = smd['description'].fillna('')
|
190 |
+
|
191 |
+
|
192 |
+
# <b><font size="3"> This is where things gets exciting!!!!!!!!!<font> <b>
|
193 |
+
#
|
194 |
+
# [1] Convert a collection of raw documents to a matrix of TF-IDF features -- TF-IDF: term frequency–inverse document frequency <br>
|
195 |
+
# <b>how many times a word appears in a document, and the inverse document frequency of the word across a set of documents?<b> <br>
|
196 |
+
#
|
197 |
+
# [2] ngram_range: All values of n such that min_n <= n <= max_n will be used. For example an ngram_range of (1, 1) means only unigrams, (1, 2) means unigrams and bigrams, So we're using both unigrams and bigrams <br>
|
198 |
+
#
|
199 |
+
# [3] A 1-gram (or unigram) is a one-word sequence. ... A 2-gram (or bigram) is a two-word sequence of words, like “I love”, “love reading”, or “Analytics Vidhya”. And a 3-gram (or trigram) is a three-word sequence of words like “I love reading”
|
200 |
+
|
201 |
+
# In[21]:
|
202 |
+
|
203 |
+
|
204 |
+
tf = TfidfVectorizer(analyzer='word',ngram_range=(1, 2),min_df=0, stop_words='english')
|
205 |
+
tfidf_matrix = tf.fit_transform(smd['description'])
|
206 |
+
|
207 |
+
|
208 |
+
# In[22]:
|
209 |
+
|
210 |
+
|
211 |
+
cosine_sim = linear_kernel(tfidf_matrix, tfidf_matrix)
|
212 |
+
|
213 |
+
|
214 |
+
# In[23]:
|
215 |
+
|
216 |
+
|
217 |
+
smd = smd.reset_index()
|
218 |
+
|
219 |
+
|
220 |
+
# In[24]:
|
221 |
+
|
222 |
+
|
223 |
+
titles = smd['title']
|
224 |
+
indices = pd.Series(smd.index, index=smd['title'])
|
225 |
+
|
226 |
+
|
227 |
+
# In[25]:
|
228 |
+
|
229 |
+
|
230 |
+
tfidf_matrix.shape
|
231 |
+
|
232 |
+
|
233 |
+
# In[34]:
|
234 |
+
|
235 |
+
|
236 |
+
def get_recommendations(title):
|
237 |
+
if indices[title].shape ==():
|
238 |
+
idx = indices[title]
|
239 |
+
else:
|
240 |
+
idx = indices[title][0]
|
241 |
+
sim = cosine_sim
|
242 |
+
sim_scores = list(enumerate(sim[idx]))
|
243 |
+
sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
|
244 |
+
sim_scores = sim_scores[1:5]
|
245 |
+
title_idx= [l[0] for l in sim_scores]
|
246 |
+
title_rec = [titles[i] for i in title_idx]
|
247 |
+
return title_rec
|
248 |
+
|
249 |
+
|
250 |
+
# In[28]:
|
251 |
+
|
252 |
+
|
253 |
+
def greet(name):
|
254 |
+
return "Hello " + name + "!!"
|
255 |
+
|
256 |
+
|
257 |
+
# In[27]:
|
258 |
+
|
259 |
+
|
260 |
+
get_recommendations('The Dark Knight',cosine_sim)
|
261 |
+
|
262 |
+
|
263 |
+
# <b> <font size="3"> Adding the metadata to the rec system <font> <b>
|
264 |
+
|
265 |
+
# In[42]:
|
266 |
+
|
267 |
+
|
268 |
+
credits = pd.read_csv(path+'/credits.csv')
|
269 |
+
keywords = pd.read_csv(path+'/keywords.csv')
|
270 |
+
|
271 |
+
|
272 |
+
# In[43]:
|
273 |
+
|
274 |
+
|
275 |
+
keywords['id'] = keywords['id'].astype('int')
|
276 |
+
credits['id'] = credits['id'].astype('int')
|
277 |
+
md['id'] = md['id'].astype('int')
|
278 |
+
|
279 |
+
|
280 |
+
# In[44]:
|
281 |
+
|
282 |
+
|
283 |
+
md = md.merge(credits, on = 'id')
|
284 |
+
md = md.merge(keywords, on = 'id')
|
285 |
+
smd = md[md['id'].isin(links)]
|
286 |
+
|
287 |
+
|
288 |
+
# In[45]:
|
289 |
+
|
290 |
+
|
291 |
+
smd.shape
|
292 |
+
|
293 |
+
|
294 |
+
# In[46]:
|
295 |
+
|
296 |
+
|
297 |
+
smd['cast'] = smd['cast'].apply(literal_eval)
|
298 |
+
smd['crew'] = smd['crew'].apply(literal_eval)
|
299 |
+
smd['keywords'] = smd['keywords'].apply(literal_eval)
|
300 |
+
smd['cast_size'] = smd['cast'].apply(lambda x: len(x))
|
301 |
+
smd['crew_size'] = smd['crew'].apply(lambda x: len(x))
|
302 |
+
|
303 |
+
|
304 |
+
# In[47]:
|
305 |
+
|
306 |
+
|
307 |
+
def get_director(x):
|
308 |
+
for i in x:
|
309 |
+
if i['job'] == 'Director':
|
310 |
+
return i['name']
|
311 |
+
return np.nan
|
312 |
+
|
313 |
+
|
314 |
+
# In[48]:
|
315 |
+
|
316 |
+
|
317 |
+
smd['director'] = smd['crew'].apply(get_director)
|
318 |
+
smd['cast'] = smd['cast'].apply(lambda x: [i['name'] for i in x] if isinstance(x,list) else [])
|
319 |
+
smd['cast'] = smd['cast'].apply(lambda x: x[:3] if len(x)>=3 else x)
|
320 |
+
|
321 |
+
|
322 |
+
# In[49]:
|
323 |
+
|
324 |
+
|
325 |
+
smd['keywords'] = smd['keywords'].apply(lambda x: [i['name'] for i in x] if isinstance(x,list) else [])
|
326 |
+
|
327 |
+
|
328 |
+
# In[50]:
|
329 |
+
|
330 |
+
|
331 |
+
smd['cast'] = smd['cast'].apply(lambda x: [str.lower(i.replace(" ","")) for i in x])
|
332 |
+
|
333 |
+
|
334 |
+
# In[51]:
|
335 |
+
|
336 |
+
|
337 |
+
smd['director'] = smd['director'].astype('str').apply(lambda x: str.lower(x.replace(" ", "")))
|
338 |
+
smd['director'] = smd['director'].apply(lambda x: [x,x, x])
|
339 |
+
# we mentioned director 3 times to give it more weight
|
340 |
+
|
341 |
+
|
342 |
+
# In[52]:
|
343 |
+
|
344 |
+
|
345 |
+
s = smd.apply(lambda x: pd.Series(x['keywords']),axis=1).stack().reset_index(level=1, drop=True)
|
346 |
+
s.name = 'keyword'
|
347 |
+
s=s.value_counts()
|
348 |
+
s = s[s>1]
|
349 |
+
|
350 |
+
|
351 |
+
# In[53]:
|
352 |
+
|
353 |
+
|
354 |
+
stemmer = SnowballStemmer('english')
|
355 |
+
|
356 |
+
|
357 |
+
# In[54]:
|
358 |
+
|
359 |
+
|
360 |
+
stemmer.stem('')
|
361 |
+
|
362 |
+
|
363 |
+
# In[55]:
|
364 |
+
|
365 |
+
|
366 |
+
smd['keywords'] = smd['keywords'].apply(lambda x: [i for i in x if i in s])
|
367 |
+
smd['keywords'] = smd['keywords'].apply(lambda x: [stemmer.stem(i) for i in x])
|
368 |
+
smd['keywords'] = smd['keywords'].apply(lambda x: [str.lower(i.replace(" ","")) for i in x])
|
369 |
+
|
370 |
+
|
371 |
+
# In[56]:
|
372 |
+
|
373 |
+
|
374 |
+
smd['soup'] = smd['keywords'] + smd['cast'] + smd['director'] + smd['genres']
|
375 |
+
smd['soup'] = smd['soup'].apply(lambda x: ' '.join(x))
|
376 |
+
|
377 |
+
|
378 |
+
# In[57]:
|
379 |
+
|
380 |
+
|
381 |
+
count = CountVectorizer(analyzer = 'word', ngram_range = (1,2), min_df = 0, stop_words = 'english')
|
382 |
+
count_matrix = count.fit_transform(smd['soup'])
|
383 |
+
|
384 |
+
|
385 |
+
# In[58]:
|
386 |
+
|
387 |
+
|
388 |
+
cosine_sim2 = linear_kernel(count_matrix, count_matrix)
|
389 |
+
|
390 |
+
|
391 |
+
# In[59]:
|
392 |
+
|
393 |
+
|
394 |
+
smd = smd.reset_index()
|
395 |
+
titles = smd['title']
|
396 |
+
indices = pd.Series(smd.index, index=smd['title'])
|
397 |
+
|
398 |
+
|
399 |
+
# In[45]:
|
400 |
+
|
401 |
+
|
402 |
+
cosine_sim2.shape
|
403 |
+
|
404 |
+
|
405 |
+
# In[60]:
|
406 |
+
|
407 |
+
|
408 |
+
def get_recommendations(title,sim):
|
409 |
+
if indices[title].shape ==():
|
410 |
+
idx = indices[title]
|
411 |
+
else:
|
412 |
+
idx = indices[title][0]
|
413 |
+
sim_scores = list(enumerate(sim[idx]))
|
414 |
+
sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
|
415 |
+
sim_scores = sim_scores[1:31]
|
416 |
+
title_idx= [l[0] for l in sim_scores]
|
417 |
+
title_rec = [titles[i] for i in title_idx]
|
418 |
+
return title_rec
|
419 |
+
|
420 |
+
|
421 |
+
# In[62]:
|
422 |
+
|
423 |
+
|
424 |
+
get_recommendations('The Avengers',cosine_sim2)
|
425 |
+
|
426 |
+
|
427 |
+
# <font size="3"> This recommendation system works a lot better than the first, but it doesn't take popularity into account. <font>
|
428 |
+
|
429 |
+
# In[75]:
|
430 |
+
|
431 |
+
|
432 |
+
def improved_recommendations(title):
|
433 |
+
idx = indices[title]
|
434 |
+
sim_scores = list(enumerate(cosine_sim2[idx]))
|
435 |
+
sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True)
|
436 |
+
sim_scores = sim_scores[1:26]
|
437 |
+
movie_indices = [i[0] for i in sim_scores]
|
438 |
+
|
439 |
+
movies = smd.iloc[movie_indices][['title', 'vote_count', 'vote_average', 'year']]
|
440 |
+
vote_counts = movies[movies['vote_count'].notnull()]['vote_count'].astype('int')
|
441 |
+
vote_averages = movies[movies['vote_average'].notnull()]['vote_average'].astype('int')
|
442 |
+
C = vote_averages.mean()
|
443 |
+
m = vote_counts.quantile(0.60)
|
444 |
+
qualified = movies[(movies['vote_count'] >= m) & (movies['vote_count'].notnull()) & (movies['vote_average'].notnull())]
|
445 |
+
qualified['vote_count'] = qualified['vote_count'].astype('int')
|
446 |
+
qualified['vote_average'] = qualified['vote_average'].astype('int')
|
447 |
+
qualified['wr'] = qualified.apply(weighted_rating, axis=1)
|
448 |
+
qualified = qualified.sort_values('wr', ascending=False).head(10)
|
449 |
+
return list(qualified['title'])
|
450 |
+
|
451 |
+
|
452 |
+
# In[76]:
|
453 |
+
|
454 |
+
|
455 |
+
list(improved_recommendations('Mean Girls'))
|
456 |
+
|
457 |
+
|
458 |
+
# In[81]:
|
459 |
+
|
460 |
+
|
461 |
+
iface = gr.Interface(fn=improved_recommendations, title= "Enter movie title for recommendations",inputs="text", outputs=["text",'text','text','text',"text",'text','text','text'], examples = ['The Dark Knight', 'Mean Girls', 'Avatar','The Godfather', 'Top Gun', 'Toy Story'])
|
462 |
+
iface.launch(share=True)
|
463 |
+
|
464 |
+
|
465 |
+
# In[83]:
|
466 |
+
|
467 |
+
|
468 |
+
get_ipython().system('git clone https://huggingface.co/spaces/Kamand/Movie_Recommendation')
|
469 |
+
|
470 |
+
|
471 |
+
# In[ ]:
|
472 |
+
|
473 |
+
|
474 |
+
get_ipython().system('git add app.py')
|
475 |
+
get_ipython().system('git commit -m "Add application file"')
|
476 |
+
get_ipython().system('git push')
|
477 |
+
|
478 |
+
|
479 |
+
|
480 |
+
|
481 |
+
|
482 |
+
|