Spaces:
Running
Running
import concurrent.futures | |
import random | |
import gradio as gr | |
import requests | |
import io, base64, json | |
# import spaces | |
from PIL import Image | |
from .model_config import model_config | |
from .model_worker import BaseModelWorker | |
class ModelManager: | |
def __init__(self): | |
self.models_config = model_config | |
self.models_worker: list[BaseModelWorker] = {} | |
self.build_model_workers() | |
def build_model_workers(self): | |
for cfg in self.models_config.values(): | |
worker = BaseModelWorker(cfg.model_name, cfg.i2s_model, cfg.online_model, cfg.model_path) | |
self.models_worker[cfg.model_name] = worker | |
def get_all_models(self): | |
models = [] | |
for model_name in self.models_config.keys(): | |
models.append(model_name) | |
return models | |
def get_t2s_models(self): | |
models = [] | |
for cfg in self.models_config.values(): | |
if not cfg.i2s_model: | |
models.append(cfg.model_name) | |
return models | |
def get_i2s_models(self): | |
models = [] | |
for cfg in self.models_config.values(): | |
if cfg.i2s_model: | |
models.append(cfg.model_name) | |
return models | |
def get_online_models(self): | |
models = [] | |
for cfg in self.models_config.values(): | |
if cfg.online_model: | |
models.append(cfg.model_name) | |
return models | |
def get_models(self, i2s_model:bool, online_model:bool): | |
models = [] | |
for cfg in self.models_config.values(): | |
if cfg.i2s_model==i2s_model and cfg.online_model==online_model: | |
models.append(cfg.model_name) | |
return models | |
def check_online(self, name): | |
worker = self.models_worker[name] | |
if not worker.online_model: | |
return | |
# @spaces.GPU(duration=120) | |
def inference(self, | |
prompt, model_name, | |
offline=False, offline_idx=None): | |
result = None | |
worker = self.models_worker[model_name] | |
if offline: | |
result = worker.load_offline(offline, offline_idx) | |
if not offline or result == None: | |
if worker.check_online(): | |
result = worker.inference(prompt) | |
return result | |
def render(self, shape, model_name): | |
worker = self.models_worker[model_name] | |
result = worker.render(shape) | |
return result | |
def inference_parallel(self, | |
prompt, model_A, model_B, | |
offline=False, offline_idx=None): | |
results = [] | |
model_names = [model_A, model_B] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
future_to_result = {executor.submit(self.inference, prompt, model, offline, offline_idx): model | |
for model in model_names} | |
for future in concurrent.futures.as_completed(future_to_result): | |
result = future.result() | |
results.append(result) | |
return results[0], results[1] | |
def inference_parallel_anony(self, | |
prompt, model_A, model_B, | |
i2s_model: bool, offline: bool =False, offline_idx: int =None): | |
if model_A == model_B == "": | |
if offline and i2s_model: | |
model_A, model_B = random.sample(self.get_i2s_models(), 2) | |
elif offline and not i2s_model: | |
model_A, model_B = random.sample(self.get_t2s_models(), 2) | |
else: | |
model_A, model_B = random.sample(self.get_models(i2s_model=i2s_model, online_model=True), 2) | |
model_names = [model_A, model_B] | |
results = [] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
future_to_result = {executor.submit(self.inference, prompt, model, offline, offline_idx): model | |
for model in model_names} | |
for future in concurrent.futures.as_completed(future_to_result): | |
result = future.result() | |
results.append(result) | |
return results[0], results[1], model_A, model_B | |
def render_parallel(self, shape_A, model_A, shape_B, model_B): | |
results = [] | |
model_names = [model_A, model_B] | |
shapes = [shape_A, shape_B] | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
future_to_result = {executor.submit(self.render, shape, model): model | |
for model, shape in zip(model_names, shapes)} | |
for future in concurrent.futures.as_completed(future_to_result): | |
result = future.result() | |
results.append(result) | |
return results[0], results[1] | |
# def i2s_inference_parallel(self, image, model_A, model_B): | |
# results = [] | |
# model_names = [model_A, model_B] | |
# with concurrent.futures.ThreadPoolExecutor() as executor: | |
# future_to_result = {executor.submit(self.inference, image, model): model | |
# for model in model_names} | |
# for future in concurrent.futures.as_completed(future_to_result): | |
# result = future.result() | |
# results.append(result) | |
# return results[0], results[1] | |