Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
from collections import OrderedDict | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torchvision.models import vgg16, vgg16_bn | |
from torchvision.models import resnet50 | |
from kornia.filters import laplacian | |
from config import Config | |
from dataset import class_labels_TR_sorted | |
from models.backbones.build_backbone import build_backbone | |
from models.modules.decoder_blocks import BasicDecBlk, ResBlk, HierarAttDecBlk | |
from models.modules.lateral_blocks import BasicLatBlk | |
from models.modules.aspp import ASPP, ASPPDeformable | |
from models.modules.ing import * | |
from models.refinement.refiner import Refiner, RefinerPVTInChannels4, RefUNet | |
from models.refinement.stem_layer import StemLayer | |
class BiRefNet(nn.Module): | |
def __init__(self, bb_pretrained=True): | |
super(BiRefNet, self).__init__() | |
self.config = Config() | |
self.epoch = 1 | |
self.bb = build_backbone(self.config.bb, pretrained=bb_pretrained) | |
channels = self.config.lateral_channels_in_collection | |
if self.config.auxiliary_classification: | |
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) | |
self.cls_head = nn.Sequential( | |
nn.Linear(channels[0], len(class_labels_TR_sorted)) | |
) | |
if self.config.squeeze_block: | |
self.squeeze_module = nn.Sequential(*[ | |
eval(self.config.squeeze_block.split('_x')[0])(channels[0]+sum(self.config.cxt), channels[0]) | |
for _ in range(eval(self.config.squeeze_block.split('_x')[1])) | |
]) | |
self.decoder = Decoder(channels) | |
if self.config.locate_head: | |
self.locate_header = nn.ModuleList([ | |
BasicDecBlk(channels[0], channels[-1]), | |
nn.Sequential( | |
nn.Conv2d(channels[-1], 1, 1, 1, 0), | |
) | |
]) | |
if self.config.ender: | |
self.dec_end = nn.Sequential( | |
nn.Conv2d(1, 16, 3, 1, 1), | |
nn.Conv2d(16, 1, 3, 1, 1), | |
nn.ReLU(inplace=True), | |
) | |
# refine patch-level segmentation | |
if self.config.refine: | |
if self.config.refine == 'itself': | |
self.stem_layer = StemLayer(in_channels=3+1, inter_channels=48, out_channels=3) | |
else: | |
self.refiner = eval('{}({})'.format(self.config.refine, 'in_channels=3+1')) | |
if self.config.freeze_bb: | |
# Freeze the backbone... | |
print(self.named_parameters()) | |
for key, value in self.named_parameters(): | |
if 'bb.' in key and 'refiner.' not in key: | |
value.requires_grad = False | |
def forward_enc(self, x): | |
if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']: | |
x1 = self.bb.conv1(x); x2 = self.bb.conv2(x1); x3 = self.bb.conv3(x2); x4 = self.bb.conv4(x3) | |
else: | |
x1, x2, x3, x4 = self.bb(x) | |
if self.config.mul_scl_ipt == 'cat': | |
B, C, H, W = x.shape | |
x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True)) | |
x1 = torch.cat([x1, F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)], dim=1) | |
x2 = torch.cat([x2, F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)], dim=1) | |
x3 = torch.cat([x3, F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)], dim=1) | |
x4 = torch.cat([x4, F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)], dim=1) | |
elif self.config.mul_scl_ipt == 'add': | |
B, C, H, W = x.shape | |
x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True)) | |
x1 = x1 + F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True) | |
x2 = x2 + F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True) | |
x3 = x3 + F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True) | |
x4 = x4 + F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True) | |
class_preds = self.cls_head(self.avgpool(x4).view(x4.shape[0], -1)) if self.training and self.config.auxiliary_classification else None | |
if self.config.cxt: | |
x4 = torch.cat( | |
( | |
*[ | |
F.interpolate(x1, size=x4.shape[2:], mode='bilinear', align_corners=True), | |
F.interpolate(x2, size=x4.shape[2:], mode='bilinear', align_corners=True), | |
F.interpolate(x3, size=x4.shape[2:], mode='bilinear', align_corners=True), | |
][-len(self.config.cxt):], | |
x4 | |
), | |
dim=1 | |
) | |
return (x1, x2, x3, x4), class_preds | |
# def forward_loc(self, x): | |
# ########## Encoder ########## | |
# (x1, x2, x3, x4), class_preds = self.forward_enc(x) | |
# if self.config.squeeze_block: | |
# x4 = self.squeeze_module(x4) | |
# if self.config.locate_head: | |
# locate_preds = self.locate_header[1]( | |
# F.interpolate( | |
# self.locate_header[0]( | |
# F.interpolate(x4, size=x2.shape[2:], mode='bilinear', align_corners=True) | |
# ), size=x.shape[2:], mode='bilinear', align_corners=True | |
# ) | |
# ) | |
def forward_ori(self, x): | |
########## Encoder ########## | |
(x1, x2, x3, x4), class_preds = self.forward_enc(x) | |
if self.config.squeeze_block: | |
x4 = self.squeeze_module(x4) | |
########## Decoder ########## | |
features = [x, x1, x2, x3, x4] | |
if self.training and self.config.out_ref: | |
features.append(laplacian(torch.mean(x, dim=1).unsqueeze(1), kernel_size=5)) | |
scaled_preds = self.decoder(features) | |
return scaled_preds, class_preds | |
def forward_ref(self, x, pred): | |
# refine patch-level segmentation | |
if pred.shape[2:] != x.shape[2:]: | |
pred = F.interpolate(pred, size=x.shape[2:], mode='bilinear', align_corners=True) | |
# pred = pred.sigmoid() | |
if self.config.refine == 'itself': | |
x = self.stem_layer(torch.cat([x, pred], dim=1)) | |
scaled_preds, class_preds = self.forward_ori(x) | |
else: | |
scaled_preds = self.refiner([x, pred]) | |
class_preds = None | |
return scaled_preds, class_preds | |
def forward_ref_end(self, x): | |
# remove the grids of concatenated preds | |
return self.dec_end(x) if self.config.ender else x | |
# def forward(self, x): | |
# if self.config.refine: | |
# scaled_preds, class_preds_ori = self.forward_ori(F.interpolate(x, size=(x.shape[2]//4, x.shape[3]//4), mode='bilinear', align_corners=True)) | |
# class_preds_lst = [class_preds_ori] | |
# for _ in range(self.config.refine_iteration): | |
# scaled_preds_ref, class_preds_ref = self.forward_ref(x, scaled_preds[-1]) | |
# scaled_preds += scaled_preds_ref | |
# class_preds_lst.append(class_preds_ref) | |
# else: | |
# scaled_preds, class_preds = self.forward_ori(x) | |
# class_preds_lst = [class_preds] | |
# return [scaled_preds, class_preds_lst] if self.training else scaled_preds | |
def forward(self, x): | |
scaled_preds, class_preds = self.forward_ori(x) | |
class_preds_lst = [class_preds] | |
return [scaled_preds, class_preds_lst] if self.training else scaled_preds | |
class Decoder(nn.Module): | |
def __init__(self, channels): | |
super(Decoder, self).__init__() | |
self.config = Config() | |
DecoderBlock = eval(self.config.dec_blk) | |
LateralBlock = eval(self.config.lat_blk) | |
if self.config.dec_ipt: | |
self.split = self.config.dec_ipt_split | |
N_dec_ipt = 64 | |
DBlock = SimpleConvs | |
ic = 64 | |
ipt_cha_opt = 1 | |
self.ipt_blk4 = DBlock(2**8*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic) | |
self.ipt_blk3 = DBlock(2**6*3 if self.split else 3, [N_dec_ipt, channels[1]//8][ipt_cha_opt], inter_channels=ic) | |
self.ipt_blk2 = DBlock(2**4*3 if self.split else 3, [N_dec_ipt, channels[2]//8][ipt_cha_opt], inter_channels=ic) | |
self.ipt_blk1 = DBlock(2**0*3 if self.split else 3, [N_dec_ipt, channels[3]//8][ipt_cha_opt], inter_channels=ic) | |
else: | |
self.split = None | |
self.decoder_block4 = DecoderBlock(channels[0], channels[1]) | |
self.decoder_block3 = DecoderBlock(channels[1]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[2]) | |
self.decoder_block2 = DecoderBlock(channels[2]+([N_dec_ipt, channels[1]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3]) | |
self.decoder_block1 = DecoderBlock(channels[3]+([N_dec_ipt, channels[2]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3]//2) | |
self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2+([N_dec_ipt, channels[3]//8][ipt_cha_opt] if self.config.dec_ipt else 0), 1, 1, 1, 0)) | |
self.lateral_block4 = LateralBlock(channels[1], channels[1]) | |
self.lateral_block3 = LateralBlock(channels[2], channels[2]) | |
self.lateral_block2 = LateralBlock(channels[3], channels[3]) | |
if self.config.ms_supervision: | |
self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0) | |
self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0) | |
self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0) | |
if self.config.out_ref: | |
_N = 16 | |
# self.gdt_convs_4 = nn.Sequential(nn.Conv2d(channels[1], _N, 3, 1, 1), nn.BatchNorm2d(_N), nn.ReLU(inplace=True)) | |
self.gdt_convs_3 = nn.Sequential(nn.Conv2d(channels[2], _N, 3, 1, 1), nn.BatchNorm2d(_N), nn.ReLU(inplace=True)) | |
self.gdt_convs_2 = nn.Sequential(nn.Conv2d(channels[3], _N, 3, 1, 1), nn.BatchNorm2d(_N), nn.ReLU(inplace=True)) | |
# self.gdt_convs_pred_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) | |
self.gdt_convs_pred_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) | |
self.gdt_convs_pred_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) | |
# self.gdt_convs_attn_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) | |
self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) | |
self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) | |
def get_patches_batch(self, x, p): | |
_size_h, _size_w = p.shape[2:] | |
patches_batch = [] | |
for idx in range(x.shape[0]): | |
columns_x = torch.split(x[idx], split_size_or_sections=_size_w, dim=-1) | |
patches_x = [] | |
for column_x in columns_x: | |
patches_x += [p.unsqueeze(0) for p in torch.split(column_x, split_size_or_sections=_size_h, dim=-2)] | |
patch_sample = torch.cat(patches_x, dim=1) | |
patches_batch.append(patch_sample) | |
return torch.cat(patches_batch, dim=0) | |
def forward(self, features): | |
if self.training and self.config.out_ref: | |
outs_gdt_pred = [] | |
outs_gdt_label = [] | |
x, x1, x2, x3, x4, gdt_gt = features | |
else: | |
x, x1, x2, x3, x4 = features | |
outs = [] | |
p4 = self.decoder_block4(x4) | |
m4 = self.conv_ms_spvn_4(p4) if self.config.ms_supervision else None | |
_p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True) | |
_p3 = _p4 + self.lateral_block4(x3) | |
if self.config.dec_ipt: | |
patches_batch = self.get_patches_batch(x, _p3) if self.split else x | |
_p3 = torch.cat((_p3, self.ipt_blk4(F.interpolate(patches_batch, size=x3.shape[2:], mode='bilinear', align_corners=True))), 1) | |
p3 = self.decoder_block3(_p3) | |
m3 = self.conv_ms_spvn_3(p3) if self.config.ms_supervision else None | |
if self.config.out_ref: | |
p3_gdt = self.gdt_convs_3(p3) | |
if self.training: | |
# >> GT: | |
# m3 --dilation--> m3_dia | |
# G_3^gt * m3_dia --> G_3^m, which is the label of gradient | |
m3_dia = m3 | |
gdt_label_main_3 = gdt_gt * F.interpolate(m3_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True) | |
outs_gdt_label.append(gdt_label_main_3) | |
# >> Pred: | |
# p3 --conv--BN--> F_3^G, where F_3^G predicts the \hat{G_3} with xx | |
# F_3^G --sigmoid--> A_3^G | |
gdt_pred_3 = self.gdt_convs_pred_3(p3_gdt) | |
outs_gdt_pred.append(gdt_pred_3) | |
gdt_attn_3 = self.gdt_convs_attn_3(p3_gdt).sigmoid() | |
# >> Finally: | |
# p3 = p3 * A_3^G | |
p3 = p3 * gdt_attn_3 | |
_p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True) | |
_p2 = _p3 + self.lateral_block3(x2) | |
if self.config.dec_ipt: | |
patches_batch = self.get_patches_batch(x, _p2) if self.split else x | |
_p2 = torch.cat((_p2, self.ipt_blk3(F.interpolate(patches_batch, size=x2.shape[2:], mode='bilinear', align_corners=True))), 1) | |
p2 = self.decoder_block2(_p2) | |
m2 = self.conv_ms_spvn_2(p2) if self.config.ms_supervision else None | |
if self.config.out_ref: | |
p2_gdt = self.gdt_convs_2(p2) | |
if self.training: | |
# >> GT: | |
m2_dia = m2 | |
gdt_label_main_2 = gdt_gt * F.interpolate(m2_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True) | |
outs_gdt_label.append(gdt_label_main_2) | |
# >> Pred: | |
gdt_pred_2 = self.gdt_convs_pred_2(p2_gdt) | |
outs_gdt_pred.append(gdt_pred_2) | |
gdt_attn_2 = self.gdt_convs_attn_2(p2_gdt).sigmoid() | |
# >> Finally: | |
p2 = p2 * gdt_attn_2 | |
_p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True) | |
_p1 = _p2 + self.lateral_block2(x1) | |
if self.config.dec_ipt: | |
patches_batch = self.get_patches_batch(x, _p1) if self.split else x | |
_p1 = torch.cat((_p1, self.ipt_blk2(F.interpolate(patches_batch, size=x1.shape[2:], mode='bilinear', align_corners=True))), 1) | |
_p1 = self.decoder_block1(_p1) | |
_p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True) | |
if self.config.dec_ipt: | |
patches_batch = self.get_patches_batch(x, _p1) if self.split else x | |
_p1 = torch.cat((_p1, self.ipt_blk1(F.interpolate(patches_batch, size=x.shape[2:], mode='bilinear', align_corners=True))), 1) | |
p1_out = self.conv_out1(_p1) | |
if self.config.ms_supervision: | |
outs.append(m4) | |
outs.append(m3) | |
outs.append(m2) | |
outs.append(p1_out) | |
return outs if not (self.config.out_ref and self.training) else ([outs_gdt_pred, outs_gdt_label], outs) | |
class SimpleConvs(nn.Module): | |
def __init__( | |
self, in_channels: int, out_channels: int, inter_channels=64 | |
) -> None: | |
super().__init__() | |
self.conv1 = nn.Conv2d(in_channels, inter_channels, 3, 1, 1) | |
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, 1) | |
def forward(self, x): | |
return self.conv_out(self.conv1(x)) | |