File size: 8,826 Bytes
d2410ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc930ba
 
d2410ba
 
 
 
 
 
 
 
 
fc930ba
d2410ba
 
 
 
 
 
 
 
 
 
 
 
 
a5ddf83
 
 
a13fd6e
 
fc930ba
d2410ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc930ba
d2410ba
 
c5a4ee1
 
d2410ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc930ba
d2410ba
 
 
 
fc930ba
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# -*- coding: utf-8 -*-
import os
import torch
import argparse
import numpy as np
import open3d as o3d
from huggingface_hub import hf_hub_download, HfFolder

from segment import seg_point, seg_box, seg_mask
import sam2point.dataset as dataset
import sam2point.configs as configs
from sam2point.voxelizer import Voxelizer
from sam2point.utils import cal
import matplotlib.pyplot as plt
import plotly.graph_objects as go

print("Torch CUDA:", torch.cuda.is_available())
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()

def run_demo(dataset_name, prompt_type, sample_idx, prompt_idx, voxel_size, theta, mode, ret_prompt):
   parser = argparse.ArgumentParser()
   parser.add_argument('--dataset', choices=['S3DIS', 'ScanNet', 'Objaverse', 'KITTI', 'Semantic3D'], default='Objaverse', help='dataset selected')
   parser.add_argument('--prompt_type', choices=['point', 'box', 'mask'], default='point', help='prompt type selected')
   parser.add_argument('--sample_idx', type=int, default=2, help='the index of the scene or object')
   parser.add_argument('--prompt_idx', type=int, default=0, help='the index of the prompt')   
   parser.add_argument('--voxel_size', type=float, default=0.02, help='voxel size')   
   parser.add_argument('--theta', type=float, default=0.5)  
   parser.add_argument('--mode', type=str, default='bilinear') 
   parser.add_argument("--ret_prompt", action="store_true")
   args = parser.parse_args()
   args.dataset, args.prompt_type, args.sample_idx, args.prompt_idx = dataset_name, prompt_type, sample_idx, prompt_idx
   args.voxel_size, args.theta, args.mode, args.ret_prompt = voxel_size, theta, mode, ret_prompt
   print(args)

   name_list = [args.dataset, "sample" + str(args.sample_idx), args.prompt_type + "-prompt" + str(args.prompt_idx)]
   name = '_'.join(name_list)

   # use cache result for speeding up
   repo_id = "ZiyuG/Cache"
   result_name = "cache_results/" + name + '.npy'
   prompt_name = "cache_prompt/" + name + '.npy'
   token = os.getenv('HF_TOKEN')

   try:
       result_file = hf_hub_download(repo_id=repo_id, filename=result_name, use_auth_token=token, repo_type='dataset')
       prompt_file = hf_hub_download(repo_id=repo_id, filename=prompt_name, use_auth_token=token, repo_type='dataset')
       new_color = np.load(result_file)
       PROMPT = np.load(prompt_file)
       if not args.ret_prompt: return new_color, PROMPT
       else:   return PROMPT
   except Exception as e:
       if os.path.exists("./cache_results/" + name + '.npy') and os.path.exists("./cache_prompt/" + name + '.npy'):
           new_color = np.load("./cache_results/" + name + '.npy')
           PROMPT = np.load("./cache_prompt/" + name + '.npy')
           if not args.ret_prompt: return new_color, PROMPT
           else:   return PROMPT

   if args.dataset == 'S3DIS':
       info = configs.S3DIS_samples[args.sample_idx]
       # early return
       if args.prompt_type == 'point' and args.ret_prompt:     return list(np.array(info['point_prompts'])[args.prompt_idx])
       elif args.prompt_type == 'box' and args.ret_prompt:     return list(np.array(info['box_prompts'])[args.prompt_idx])
       point, color = dataset.load_S3DIS_sample(info['path'])
   elif args.dataset == 'ScanNet':
       info = configs.ScanNet_samples[args.sample_idx]
       # early return
       if args.prompt_type == 'point' and args.ret_prompt:     return list(np.array(info['point_prompts'])[args.prompt_idx])
       elif args.prompt_type == 'box' and args.ret_prompt:     return list(np.array(info['box_prompts'])[args.prompt_idx])
       point, color = dataset.load_ScanNet_sample(info['path'])
   elif args.dataset == 'Objaverse':
       info = configs.Objaverse_samples[args.sample_idx]
       # early return
       if args.prompt_type == 'point' and args.ret_prompt:     return list(np.array(info['point_prompts'])[args.prompt_idx])
       elif args.prompt_type == 'box' and args.ret_prompt:     return list(np.array(info['box_prompts'])[args.prompt_idx])
       point, color = dataset.load_Objaverse_sample(info['path'])
       args.voxel_size = info[configs.VOXEL[args.prompt_type]][args.prompt_idx]
   elif args.dataset == 'KITTI':
       info = configs.KITTI_samples[args.sample_idx]
       # early return
       if args.prompt_type == 'point' and args.ret_prompt:     return list(np.array(info['point_prompts'])[args.prompt_idx])
       elif args.prompt_type == 'box' and args.ret_prompt:     return list(np.array(info['box_prompts'])[args.prompt_idx])
       point, color = dataset.load_KITTI_sample(info['path'])
       args.voxel_size = info[configs.VOXEL[args.prompt_type]][args.prompt_idx]
   elif args.dataset == 'Semantic3D':
       info = configs.Semantic3D_samples[args.sample_idx]
       # early return
       if args.prompt_type == 'point' and args.ret_prompt:     return list(np.array(info['point_prompts'])[args.prompt_idx])
       elif args.prompt_type == 'box' and args.ret_prompt:     return list(np.array(info['box_prompts'])[args.prompt_idx])
       point, color = dataset.load_Semantic3D_sample(info['path'], args.sample_idx)
       args.voxel_size = info[configs.VOXEL[args.prompt_type]][args.prompt_idx]
   
   point_color = np.concatenate([point, color], axis=1)
   voxelizer = Voxelizer(voxel_size=args.voxel_size, clip_bound=None)
  
   labels_in = point[:, :1].astype(int)
   locs, feats, labels, inds_reconstruct = voxelizer.voxelize(point, color, labels_in)

   if args.prompt_type == 'point':
       if args.ret_prompt:     return list(np.array(info['point_prompts'])[args.prompt_idx])
       mask = seg_point(locs, feats, info['point_prompts'], args)
       point_prompts = np.array(info['point_prompts'])
       prompt_point = list(point_prompts[args.prompt_idx])
       prompt_box = None
       PROMPT = prompt_point
   elif args.prompt_type == 'box':
       if args.ret_prompt:     return list(np.array(info['box_prompts'])[args.prompt_idx])
       mask = seg_box(locs, feats, info['box_prompts'], args)
       point_prompts = np.array(info['box_prompts'])
       prompt_point = None
       prompt_box = list(point_prompts[args.prompt_idx])
       PROMPT = prompt_box
   elif args.prompt_type == 'mask':
       if 'mask_prompts' not in info:  info['mask_prompts'] = info['point_prompts']
       mask, prompt_mask = seg_mask(locs, feats, info['mask_prompts'], args)
       prompt_point, prompt_box = None, None
       point_locs = locs[inds_reconstruct]
       point_prompt_mask = prompt_mask[point_locs[:, 0], point_locs[:, 1], point_locs[:, 2]]
       point_prompt_mask = point_prompt_mask.unsqueeze(-1)
       point_prompt_mask_not = ~point_prompt_mask
       color_prompt_mask = color * point_prompt_mask_not.numpy() + (color * 0 + np.array([[1., 0., 0.]])) * point_prompt_mask.numpy()
       PROMPT = color_prompt_mask
       if args.ret_prompt:    
           return color_prompt_mask
  
   point_locs = locs[inds_reconstruct]
   point_mask = mask[point_locs[:, 0], point_locs[:, 1], point_locs[:, 2]]
  
   point_mask = point_mask.unsqueeze(-1)
   point_mask_not = ~point_mask
  
   point, color = point_color[:, :3], point_color[:, 3:]
   new_color = color * point_mask_not.numpy() + (color * 0 + np.array([[0., 1., 0.]])) * point_mask.numpy()

   name_list = [args.dataset, "sample" + str(args.sample_idx), args.prompt_type + "-prompt" + str(args.prompt_idx)]
   name = '_'.join(name_list) + 'frames'

   #cache for speeding up
   name_list = [args.dataset, "sample" + str(args.sample_idx), args.prompt_type + "-prompt" + str(args.prompt_idx)]
   name = '_'.join(name_list)
   os.makedirs("cache_results", exist_ok=True)
   os.makedirs("cache_prompt", exist_ok=True)
   np.save("./cache_results/" + name + '.npy', new_color)
   np.save("./cache_prompt/" + name + '.npy', PROMPT)
   return new_color, PROMPT

def create_box(prompt):
   x_min, y_min, z_min, x_max, y_max, z_max = tuple(prompt)
   bbox_points = np.array([
       [x_min, y_min, z_min],
       [x_max, y_min, z_min],
       [x_max, y_max, z_min],
       [x_min, y_max, z_min],
       [x_min, y_min, z_max],
       [x_max, y_min, z_max],
       [x_max, y_max, z_max],
       [x_min, y_max, z_max]
   ])
   edges = [
       (0, 1), (1, 2), (2, 3), (3, 0), # Bottom face
       (4, 5), (5, 6), (6, 7), (7, 4), # Top face
       (0, 4), (1, 5), (2, 6), (3, 7)  # Vertical edges
   ]
   bbox_lines = []
   f = 1
   for start, end in edges:
       bbox_lines.append(go.Scatter3d(
           x=[bbox_points[start, 0], bbox_points[end, 0]],
           y=[bbox_points[start, 1], bbox_points[end, 1]],
           z=[bbox_points[start, 2], bbox_points[end, 2]],
           mode='lines',
           line=dict(color='rgb(220, 20, 60)', width=6),  
           name="Box Prompt" if f == 1 else "",
           showlegend=True if f == 1 else False
       ))
       f = 0
   return bbox_lines