SAM2Point / segment.py
ZiyuG's picture
Upload 42 files
d2410ba verified
raw
history blame
17.4 kB
from PIL import Image
import numpy as np
import torch, os
import sam2point.utils as utils
from sam2.build_sam import build_sam2_video_predictor, build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
CHECKPOINT = "./checkpoints/sam2_hiera_large.pt"
MODELCFG = "sam2_hiera_l.yaml"
RESOLUTION = 256
def grid_to_frames(grid, foldpath, args):
if not utils.build_fold(foldpath):
utils.visualize_per_frame(grid, foldpath=foldpath, resolution=RESOLUTION, args=args)
# scan all the JPEG frame names in this directory
frame_names = [
p for p in os.listdir(foldpath)
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG", ".png"]
]
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
for i in range(len(frame_names)):
frame_names[i] = os.path.join(foldpath, frame_names[i])
return frame_names
def segment_point(frame_paths, point):
sam2_checkpoint = CHECKPOINT
model_cfg = MODELCFG
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
inference_state = predictor.init_state(frame_paths=frame_paths)
predictor.reset_state(inference_state)
ann_frame_idx = 0 # the frame index we interact with
ann_obj_id = 1 # give a unique id to each object we interact with (it can be any integers)
# Let's add a positive click at (x, y) = (210, 350) to get started
points = np.array([point], dtype=np.float32)
# for labels, `1` means positive click and `0` means negative click
labels = np.array([1], np.int32)
_, out_obj_ids, out_mask_logits = predictor.add_new_points_or_box(
inference_state=inference_state,
frame_idx=ann_frame_idx,
obj_id=ann_obj_id,
points=points,
labels=labels,
)
# run propagation throughout the video and collect the results in a dict
video_segments = {} # video_segments contains the per-frame segmentation results
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
video_segments[out_frame_idx] = {
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
masks = []
for out_frame_idx in range(0, len(frame_paths)):
for out_obj_id, out_mask in video_segments[out_frame_idx].items():
out_mask = torch.from_numpy(out_mask * 1.0)
masks.append(out_mask)
masks = torch.cat(masks, dim=0)
return masks
def segment_box(frame_paths, box, n_frame):
sam2_checkpoint = CHECKPOINT
model_cfg = MODELCFG
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
inference_state = predictor.init_state(frame_paths=frame_paths)
predictor.reset_state(inference_state)
for i in range(n_frame):
ann_frame_idx = i # the frame index we interact with
ann_obj_id = 1 # give a unique id to each object we interact with (it can be any integers)
# Let's add a positive click at (x, y) = (210, 350) to get started
box = np.array(box, dtype=np.float32)
# for labels, `1` means positive click and `0` means negative click
_, out_obj_ids, out_mask_logits = predictor.add_new_points_or_box(
inference_state=inference_state,
frame_idx=ann_frame_idx,
obj_id=ann_obj_id,
box=box,
)
# run propagation throughout the video and collect the results in a dict
video_segments = {} # video_segments contains the per-frame segmentation results
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
video_segments[out_frame_idx] = {
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
masks = []
for out_frame_idx in range(0, len(frame_paths)):
for out_obj_id, out_mask in video_segments[out_frame_idx].items():
out_mask = torch.from_numpy(out_mask * 1.0)
masks.append(out_mask)
masks = torch.cat(masks, dim=0)
# print(masks.shape)
return masks
def segment_mask(frame_paths, point):
sam2_checkpoint = CHECKPOINT
model_cfg = MODELCFG
# generate a mask for one frame, where we use the image predictor
sam2_image_model = build_sam2(model_cfg, sam2_checkpoint)
image_predictor = SAM2ImagePredictor(sam2_image_model)
image = Image.open(frame_paths[0])
image_predictor.set_image(np.array(image.convert("RGB")))
point = np.array([point], dtype=np.float32)
label = np.array([1], np.int32)
masks, scores, logits = image_predictor.predict(point_coords=point, point_labels=label, multimask_output=True)
sorted_ind = np.argsort(scores)[::-1]
masks = masks[sorted_ind]
# predict the mask for other frames
video_predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
inference_state = video_predictor.init_state(frame_paths=frame_paths)
video_predictor.reset_state(inference_state)
ann_frame_idx = 0 # the frame index we interact with
ann_obj_id = 1 # give a unique id to each object we interact with (it can be any integers)
mask_prompt = masks[0]
video_predictor.add_new_mask(inference_state=inference_state, frame_idx=ann_frame_idx, obj_id=ann_obj_id, mask=mask_prompt)
# run propagation throughout the video and collect the results in a dict
video_segments = {} # video_segments contains the per-frame segmentation results
for out_frame_idx, out_obj_ids, out_mask_logits in video_predictor.propagate_in_video(inference_state):
video_segments[out_frame_idx] = {
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
masks = []
for out_frame_idx in range(0, len(frame_paths)):
for out_obj_id, out_mask in video_segments[out_frame_idx].items():
out_mask = torch.from_numpy(out_mask * 1.0)
masks.append(out_mask)
masks = torch.cat(masks, dim=0)
return masks, mask_prompt
def seg_point(locs, feats, prompt, args):
num_voxels = locs.max().astype(int)
grid = np.ones((num_voxels + 5, num_voxels+5, num_voxels+5, 3))
# padding
locs = locs.astype(int)
for v in range(locs.shape[0]):
grid[locs[v][0]+2,locs[v][1]+2,locs[v][2]+2] = feats[v]
X, Y, Z, _ = grid.shape
grid = torch.from_numpy(grid)
name_list = ["./tmp/" + args.dataset, "sample" + str(args.sample_idx), args.prompt_type + "-prompt" + str(args.prompt_idx)]
name = '_'.join(name_list)
os.makedirs(name + 'frames', exist_ok=True)
axis0, axis1, axis2 = name + "frames/x", name + "frames/y", name + "frames/z"
grid0, grid1, grid2 = grid.permute(0,3,1,2), grid.permute(1,3,0,2), grid.permute(2,3,0,1)
a0_frame_paths = grid_to_frames(grid0, axis0, args)
a1_frame_paths = grid_to_frames(grid1, axis1, args)
a2_frame_paths = grid_to_frames(grid2, axis2, args)
voxel_coords = np.array(prompt) / args.voxel_size + 2
voxel_coords = voxel_coords.astype(int)
pixel = voxel_coords * 1.0 / X * RESOLUTION + args.theta * RESOLUTION / X
pixel = pixel.astype(int)
idx = args.prompt_idx
a0_paths_0, a0_paths_1 = a0_frame_paths[:voxel_coords[idx, 0]+1][::-1], a0_frame_paths[voxel_coords[idx, 0]:]
a1_paths_0, a1_paths_1 = a1_frame_paths[:voxel_coords[idx, 1]+1][::-1], a1_frame_paths[voxel_coords[idx, 1]:]
a2_paths_0, a2_paths_1 = a2_frame_paths[:voxel_coords[idx, 2]+1][::-1], a2_frame_paths[voxel_coords[idx, 2]:]
a0_mask_0 = torch.flip(segment_point(a0_paths_0, [pixel[idx, 2], pixel[idx, 1]]), dims=[0])
a0_mask_1 = segment_point(a0_paths_1, [pixel[idx, 2], pixel[idx, 1]])[1:, :, :]
a0_mask = torch.cat([a0_mask_0, a0_mask_1], dim=0)
a0_mask = torch.nn.functional.interpolate(a0_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0)
a1_mask_0 = torch.flip(segment_point(a1_paths_0, [pixel[idx, 2], pixel[idx, 0]]), dims=[0])
a1_mask_1 = segment_point(a1_paths_1, [pixel[idx, 2], pixel[idx, 0]])[1:, :, :]
a1_mask = torch.cat([a1_mask_0, a1_mask_1], dim=0)
a1_mask = torch.nn.functional.interpolate(a1_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0)
a2_mask_0 = torch.flip(segment_point(a2_paths_0, [pixel[idx, 1], pixel[idx, 0]]), dims=[0])
a2_mask_1 = segment_point(a2_paths_1, [pixel[idx, 1], pixel[idx, 0]])[1:, :, :]
a2_mask = torch.cat([a2_mask_0, a2_mask_1], dim=0)
a2_mask = torch.nn.functional.interpolate(a2_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0)
a0_mask, a1_mask, a2_mask = a0_mask.transpose(0, 1), a1_mask.transpose(0, 1), a2_mask.transpose(0, 1)
# utils.visualize_frame_with_mask(grid0, grid1, grid2, a0_mask, a1_mask, a2_mask, voxel_coords[idx], resolution=RESOLUTION)
mask = a0_mask.permute(0, 2, 3, 1) + a1_mask.permute(2, 0, 3, 1) + a2_mask.permute(2, 3, 0, 1)
mask = (mask > 1.5).squeeze()[2:, 2:, 2:]
return mask
def seg_box(locs, feats, prompt, args):
num_voxels = locs.max().astype(int)
grid = np.ones((num_voxels + 5, num_voxels+5, num_voxels+5, 3))
# padding
locs = locs.astype(int)
for v in range(locs.shape[0]):
grid[locs[v][0]+2,locs[v][1]+2,locs[v][2]+2] = feats[v]
X, Y, Z, _ = grid.shape
grid = torch.from_numpy(grid)
name_list = ["./tmp/" + args.dataset, "sample" + str(args.sample_idx), args.prompt_type + "-prompt" + str(args.prompt_idx)]
name = '_'.join(name_list)
os.makedirs(name + 'frames', exist_ok=True)
axis0, axis1, axis2 = name + "frames/x", name + "frames/y", name + "frames/z"
grid0, grid1, grid2 = grid.permute(0,3,1,2), grid.permute(1,3,0,2), grid.permute(2,3,0,1)
a0_frame_paths = grid_to_frames(grid0, axis0, args)
a1_frame_paths = grid_to_frames(grid1, axis1, args)
a2_frame_paths = grid_to_frames(grid2, axis2, args)
point_prompts = np.array(prompt)
voxel_coords = point_prompts / args.voxel_size + 2
voxel_coords = voxel_coords.astype(int)
pixel = voxel_coords * 1.0 / X * RESOLUTION + args.theta * RESOLUTION / X
pixel = pixel.astype(int)
idx = args.prompt_idx
a0_paths_0, a0_paths_1 = a0_frame_paths[:voxel_coords[idx, 3]+1][::-1], a0_frame_paths[voxel_coords[idx, 0]:]
a1_paths_0, a1_paths_1 = a1_frame_paths[:voxel_coords[idx, 4]+1][::-1], a1_frame_paths[voxel_coords[idx, 1]:]
a2_paths_0, a2_paths_1 = a2_frame_paths[:voxel_coords[idx, 5]+1][::-1], a2_frame_paths[voxel_coords[idx, 2]:]
frame_num0 = voxel_coords[idx, 3] - voxel_coords[idx, 0]
end0, start0 = len(a0_paths_0) - int(frame_num0 / 2), int(frame_num0 / 2)
a0_mask_0 = torch.flip(segment_box(a0_paths_0, [pixel[idx, 2], pixel[idx, 1], pixel[idx, 5], pixel[idx, 4]], frame_num0), dims=[0])[:end0]
a0_mask_1 = segment_box(a0_paths_1, [pixel[idx, 2], pixel[idx, 1], pixel[idx, 5], pixel[idx, 4]], frame_num0)[start0:]
a0_mask = torch.cat([a0_mask_0, a0_mask_1], dim=0)
a0_mask = torch.nn.functional.interpolate(a0_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0)
frame_num1 = voxel_coords[idx, 4] - voxel_coords[idx, 1]
end1, start1 = len(a1_paths_0) - int(frame_num1 / 2), int(frame_num1 / 2)
a1_mask_0 = torch.flip(segment_box(a1_paths_0, [pixel[idx, 2], pixel[idx, 0], pixel[idx, 5], pixel[idx, 3]], frame_num1), dims=[0])[:end1]
a1_mask_1 = segment_box(a1_paths_1, [pixel[idx, 2], pixel[idx, 0], pixel[idx, 5], pixel[idx, 3]], frame_num1)[start1:]
a1_mask = torch.cat([a1_mask_0, a1_mask_1], dim=0)
a1_mask = torch.nn.functional.interpolate(a1_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0)
frame_num2 = voxel_coords[idx, 5] - voxel_coords[idx, 2]
end2, start2 = len(a2_paths_0) - int(frame_num2 / 2), int(frame_num2 / 2)
a2_mask_0 = torch.flip(segment_box(a2_paths_0, [pixel[idx, 1], pixel[idx, 0], pixel[idx, 4], pixel[idx, 3]], frame_num2), dims=[0])[:end2]
a2_mask_1 = segment_box(a2_paths_1, [pixel[idx, 1], pixel[idx, 0], pixel[idx, 4], pixel[idx, 3]], frame_num2)[start2:]
a2_mask = torch.cat([a2_mask_0, a2_mask_1], dim=0)
a2_mask = torch.nn.functional.interpolate(a2_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0)
a0_mask, a1_mask, a2_mask = a0_mask.transpose(0, 1), a1_mask.transpose(0, 1), a2_mask.transpose(0, 1)
# utils.visualize_frame_with_mask(grid0, grid1, grid2, a0_mask, a1_mask, a2_mask, voxel_coords[idx], resolution=RESOLUTION)
mask = a0_mask.permute(0, 2, 3, 1) + a1_mask.permute(2, 0, 3, 1) + a2_mask.permute(2, 3, 0, 1)
mask = (mask > 1.5).squeeze()[2:, 2:, 2:]
return mask
def seg_mask(locs, feats, prompt, args):
num_voxels = locs.max().astype(int)
grid = np.ones((num_voxels + 5, num_voxels+5, num_voxels+5, 3))
# padding
locs = locs.astype(int)
for v in range(locs.shape[0]):
grid[locs[v][0]+2,locs[v][1]+2,locs[v][2]+2] = feats[v]
X, Y, Z, _ = grid.shape
grid = torch.from_numpy(grid)
name_list = ["./tmp/" + args.dataset, "sample" + str(args.sample_idx), args.prompt_type + "-prompt" + str(args.prompt_idx)]
name = '_'.join(name_list)
os.makedirs(name + 'frames', exist_ok=True)
axis0, axis1, axis2 = name + "frames/x", name + "frames/y", name + "frames/z"
grid0, grid1, grid2 = grid.permute(0,3,1,2), grid.permute(1,3,0,2), grid.permute(2,3,0,1)
a0_frame_paths = grid_to_frames(grid0, axis0, args)
a1_frame_paths = grid_to_frames(grid1, axis1, args)
a2_frame_paths = grid_to_frames(grid2, axis2, args)
point_prompts = np.array(prompt)
voxel_coords = point_prompts / args.voxel_size + 2
voxel_coords = voxel_coords.astype(int)
pixel = voxel_coords * 1.0 / X * RESOLUTION + args.theta * RESOLUTION / X
pixel = pixel.astype(int)
idx = args.prompt_idx
a0_paths_0, a0_paths_1 = a0_frame_paths[:voxel_coords[idx, 0]+1][::-1], a0_frame_paths[voxel_coords[idx, 0]:]
a1_paths_0, a1_paths_1 = a1_frame_paths[:voxel_coords[idx, 1]+1][::-1], a1_frame_paths[voxel_coords[idx, 1]:]
a2_paths_0, a2_paths_1 = a2_frame_paths[:voxel_coords[idx, 2]+1][::-1], a2_frame_paths[voxel_coords[idx, 2]:]
a0_mask_0, a0_prompt = segment_mask(a0_paths_0, [pixel[idx, 2], pixel[idx, 1]])
a0_mask_0 = torch.flip(a0_mask_0, dims=[0])
a0_mask_1, _ = segment_mask(a0_paths_1, [pixel[idx, 2], pixel[idx, 1]])
a0_mask_1 = a0_mask_1[1:, :, :]
a0_mask = torch.cat([a0_mask_0, a0_mask_1], dim=0)
a0_prompt_mask = a0_mask * 0
a0_prompt_mask[voxel_coords[idx, 0]] = torch.from_numpy(a0_prompt)
a0_mask = torch.nn.functional.interpolate(a0_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0)
a0_prompt_mask = torch.nn.functional.interpolate(a0_prompt_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0)
a1_mask_0, a1_prompt = segment_mask(a1_paths_0, [pixel[idx, 2], pixel[idx, 0]])
a1_mask_0 = torch.flip(a1_mask_0, dims=[0])
a1_mask_1, _ = segment_mask(a1_paths_1, [pixel[idx, 2], pixel[idx, 0]])
a1_mask_1 = a1_mask_1[1:, :, :]
a1_mask = torch.cat([a1_mask_0, a1_mask_1], dim=0)
a1_prompt_mask = a1_mask * 0
a1_prompt_mask[voxel_coords[idx, 1]] = torch.from_numpy(a1_prompt)
a1_mask = torch.nn.functional.interpolate(a1_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0)
a1_prompt_mask = torch.nn.functional.interpolate(a1_prompt_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0)
a2_mask_0, a2_prompt = segment_mask(a2_paths_0, [pixel[idx, 1], pixel[idx, 0]])
a2_mask_0 = torch.flip(a2_mask_0, dims=[0])
a2_mask_1, _ = segment_mask(a2_paths_1, [pixel[idx, 1], pixel[idx, 0]])
a2_mask_1 = a2_mask_1[1:, :, :]
a2_mask = torch.cat([a2_mask_0, a2_mask_1], dim=0)
a2_prompt_mask = a2_mask * 0
a2_prompt_mask[voxel_coords[idx, 2]] = torch.from_numpy(a2_prompt)
a2_mask = torch.nn.functional.interpolate(a2_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0)
a2_prompt_mask = torch.nn.functional.interpolate(a2_prompt_mask.unsqueeze(0).unsqueeze(0), size=(X, X, X), mode='trilinear').squeeze(0)
a0_mask, a1_mask, a2_mask = a0_mask.transpose(0, 1), a1_mask.transpose(0, 1), a2_mask.transpose(0, 1)
utils.visualize_frame_with_mask(grid0, grid1, grid2, a0_mask, a1_mask, a2_mask, voxel_coords[idx], resolution=RESOLUTION, name=name, args=args)
a0_prompt_mask, a1_prompt_mask, a2_prompt_mask = a0_prompt_mask.transpose(0, 1), a1_prompt_mask.transpose(0, 1), a2_prompt_mask.transpose(0, 1)
mask = a0_mask.permute(0, 2, 3, 1) + a1_mask.permute(2, 0, 3, 1) + a2_mask.permute(2, 3, 0, 1)
mask = (mask > 1.5).squeeze()[2:, 2:, 2:]
prompt_mask = a0_prompt_mask.permute(0, 2, 3, 1) + a1_prompt_mask.permute(2, 0, 3, 1) + a2_prompt_mask.permute(2, 3, 0, 1)
prompt_mask = (prompt_mask > 0.5).squeeze()[2:, 2:, 2:]
return mask, prompt_mask