|
import gradio as gr |
|
from huggingface_hub import hf_hub_download, HfFolder |
|
from PIL import Image |
|
import requests, torch |
|
import numpy as np |
|
from io import BytesIO |
|
import plotly.graph_objects as go |
|
import os |
|
|
|
def load_ScanNet_sample(data_path): |
|
|
|
all_data = torch.load(data_path) |
|
|
|
point = np.array(all_data['coord']) |
|
color = np.array(all_data['color']) |
|
|
|
point = point - point.min(axis=0) |
|
point = point / point.max(axis=0) |
|
color = color / 255. |
|
return point, color |
|
|
|
def show_logo(): |
|
repo_id = "ZiyuG/Cache" |
|
filename = "scene0000_00.pth" |
|
token = os.getenv('HF_TOKEN') |
|
print("token:", token) |
|
|
|
try: |
|
file_path = hf_hub_download(repo_id=repo_id, filename=filename, use_auth_token=token, repo_type='dataset') |
|
point, color = load_ScanNet_sample(file_path) |
|
if point.shape[0] > 100000: |
|
indices = np.random.choice(point.shape[0], 100000, replace=False) |
|
point = point[indices] |
|
color = color[indices] |
|
except Exception as e: |
|
print(e) |
|
point = np.random.rand(8000, 3) |
|
color = np.random.rand(8000, 3) |
|
|
|
fig = go.Figure( |
|
data=[ |
|
go.Scatter3d( |
|
x=point[:,0], y=point[:,1], z=point[:,2], |
|
mode='markers', |
|
marker=dict(size=1, color=color, opacity=0.5), |
|
) |
|
], |
|
layout=dict( |
|
scene=dict( |
|
xaxis=dict(visible=False), |
|
yaxis=dict(visible=False), |
|
zaxis=dict(visible=False), |
|
aspectratio=dict(x=1, y=1, z=1), |
|
camera=dict(eye=dict(x=1.5, y=1.5, z=1.5)) |
|
) |
|
) |
|
) |
|
return fig |
|
|
|
iface = gr.Interface(fn=show_logo, inputs=[], outputs=gr.Plot(), title="Display Logo") |
|
iface.launch(share=True) |
|
|