|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional |
|
|
|
import torch |
|
from torch import nn, Tensor |
|
|
|
from sam2.modeling.sam.transformer import RoPEAttention |
|
|
|
from sam2.modeling.sam2_utils import get_activation_fn, get_clones |
|
|
|
|
|
class MemoryAttentionLayer(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
activation: str, |
|
cross_attention: nn.Module, |
|
d_model: int, |
|
dim_feedforward: int, |
|
dropout: float, |
|
pos_enc_at_attn: bool, |
|
pos_enc_at_cross_attn_keys: bool, |
|
pos_enc_at_cross_attn_queries: bool, |
|
self_attention: nn.Module, |
|
): |
|
super().__init__() |
|
self.d_model = d_model |
|
self.dim_feedforward = dim_feedforward |
|
self.dropout_value = dropout |
|
self.self_attn = self_attention |
|
self.cross_attn_image = cross_attention |
|
|
|
|
|
self.linear1 = nn.Linear(d_model, dim_feedforward) |
|
self.dropout = nn.Dropout(dropout) |
|
self.linear2 = nn.Linear(dim_feedforward, d_model) |
|
|
|
self.norm1 = nn.LayerNorm(d_model) |
|
self.norm2 = nn.LayerNorm(d_model) |
|
self.norm3 = nn.LayerNorm(d_model) |
|
self.dropout1 = nn.Dropout(dropout) |
|
self.dropout2 = nn.Dropout(dropout) |
|
self.dropout3 = nn.Dropout(dropout) |
|
|
|
self.activation_str = activation |
|
self.activation = get_activation_fn(activation) |
|
|
|
|
|
self.pos_enc_at_attn = pos_enc_at_attn |
|
self.pos_enc_at_cross_attn_queries = pos_enc_at_cross_attn_queries |
|
self.pos_enc_at_cross_attn_keys = pos_enc_at_cross_attn_keys |
|
|
|
def _forward_sa(self, tgt, query_pos): |
|
|
|
tgt2 = self.norm1(tgt) |
|
q = k = tgt2 + query_pos if self.pos_enc_at_attn else tgt2 |
|
tgt2 = self.self_attn(q, k, v=tgt2) |
|
tgt = tgt + self.dropout1(tgt2) |
|
return tgt |
|
|
|
def _forward_ca(self, tgt, memory, query_pos, pos, num_k_exclude_rope=0): |
|
kwds = {} |
|
if num_k_exclude_rope > 0: |
|
assert isinstance(self.cross_attn_image, RoPEAttention) |
|
kwds = {"num_k_exclude_rope": num_k_exclude_rope} |
|
|
|
|
|
tgt2 = self.norm2(tgt) |
|
tgt2 = self.cross_attn_image( |
|
q=tgt2 + query_pos if self.pos_enc_at_cross_attn_queries else tgt2, |
|
k=memory + pos if self.pos_enc_at_cross_attn_keys else memory, |
|
v=memory, |
|
**kwds, |
|
) |
|
tgt = tgt + self.dropout2(tgt2) |
|
return tgt |
|
|
|
def forward( |
|
self, |
|
tgt, |
|
memory, |
|
pos: Optional[Tensor] = None, |
|
query_pos: Optional[Tensor] = None, |
|
num_k_exclude_rope: int = 0, |
|
) -> torch.Tensor: |
|
|
|
|
|
tgt = self._forward_sa(tgt, query_pos) |
|
tgt = self._forward_ca(tgt, memory, query_pos, pos, num_k_exclude_rope) |
|
|
|
tgt2 = self.norm3(tgt) |
|
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) |
|
tgt = tgt + self.dropout3(tgt2) |
|
return tgt |
|
|
|
|
|
class MemoryAttention(nn.Module): |
|
def __init__( |
|
self, |
|
d_model: int, |
|
pos_enc_at_input: bool, |
|
layer: nn.Module, |
|
num_layers: int, |
|
batch_first: bool = True, |
|
): |
|
super().__init__() |
|
self.d_model = d_model |
|
self.layers = get_clones(layer, num_layers) |
|
self.num_layers = num_layers |
|
self.norm = nn.LayerNorm(d_model) |
|
self.pos_enc_at_input = pos_enc_at_input |
|
self.batch_first = batch_first |
|
|
|
def forward( |
|
self, |
|
curr: torch.Tensor, |
|
memory: torch.Tensor, |
|
curr_pos: Optional[Tensor] = None, |
|
memory_pos: Optional[Tensor] = None, |
|
num_obj_ptr_tokens: int = 0, |
|
): |
|
if isinstance(curr, list): |
|
assert isinstance(curr_pos, list) |
|
assert len(curr) == len(curr_pos) == 1 |
|
curr, curr_pos = ( |
|
curr[0], |
|
curr_pos[0], |
|
) |
|
|
|
assert ( |
|
curr.shape[1] == memory.shape[1] |
|
), "Batch size must be the same for curr and memory" |
|
|
|
output = curr |
|
if self.pos_enc_at_input and curr_pos is not None: |
|
output = output + 0.1 * curr_pos |
|
|
|
if self.batch_first: |
|
|
|
output = output.transpose(0, 1) |
|
curr_pos = curr_pos.transpose(0, 1) |
|
memory = memory.transpose(0, 1) |
|
memory_pos = memory_pos.transpose(0, 1) |
|
|
|
for layer in self.layers: |
|
kwds = {} |
|
if isinstance(layer.cross_attn_image, RoPEAttention): |
|
kwds = {"num_k_exclude_rope": num_obj_ptr_tokens} |
|
|
|
output = layer( |
|
tgt=output, |
|
memory=memory, |
|
pos=memory_pos, |
|
query_pos=curr_pos, |
|
**kwds, |
|
) |
|
normed_output = self.norm(output) |
|
|
|
if self.batch_first: |
|
|
|
normed_output = normed_output.transpose(0, 1) |
|
curr_pos = curr_pos.transpose(0, 1) |
|
|
|
return normed_output |
|
|