# Codes are taken from BPNet, CVPR'21 # https://github.com/wbhu/BPNet/blob/main/dataset/voxelizer.py import collections import numpy as np from sam2point.voxelization_utils import sparse_quantize from scipy.linalg import expm, norm # Rotation matrix along axis with angle theta def M(axis, theta): return expm(np.cross(np.eye(3), axis / norm(axis) * theta)) class Voxelizer: def __init__(self, voxel_size=1, clip_bound=None): ''' Args: voxel_size: side length of a voxel clip_bound: boundary of the voxelizer. Points outside the bound will be deleted expects either None or an array like ((-100, 100), (-100, 100), (-100, 100)). ignore_label: label assigned for ignore (not a training label). ''' self.voxel_size = voxel_size self.clip_bound = clip_bound def get_transformation_matrix(self): voxelization_matrix = np.eye(4) # Transform pointcloud coordinate to voxel coordinate. scale = 1 / self.voxel_size np.fill_diagonal(voxelization_matrix[:3, :3], scale) # Get final transformation matrix. return voxelization_matrix def clip(self, coords, center=None): bound_min = np.min(coords, 0).astype(float) bound_max = np.max(coords, 0).astype(float) bound_size = bound_max - bound_min if center is None: center = bound_min + bound_size * 0.5 lim = self.clip_bound # Clip points outside the limit clip_inds = ((coords[:, 0] >= (lim[0][0] + center[0])) & (coords[:, 0] < (lim[0][1] + center[0])) & (coords[:, 1] >= (lim[1][0] + center[1])) & (coords[:, 1] < (lim[1][1] + center[1])) & (coords[:, 2] >= (lim[2][0] + center[2])) & (coords[:, 2] < (lim[2][1] + center[2]))) return clip_inds def voxelize(self, coords, feats, labels, center=None, link=None, return_ind=False): assert coords.shape[1] == 3 and coords.shape[0] == feats.shape[0] and coords.shape[0] if self.clip_bound is not None: clip_inds = self.clip(coords, center) if clip_inds.sum(): coords, feats = coords[clip_inds], feats[clip_inds] if labels is not None: labels = labels[clip_inds] # Get rotation and scale M_v = self.get_transformation_matrix() # Apply transformations rigid_transformation = M_v homo_coords = np.hstack((coords, np.ones((coords.shape[0], 1), dtype=coords.dtype))) coords_aug = np.floor(homo_coords @ rigid_transformation.T[:, :3]) # Align all coordinates to the origin. min_coords = coords_aug.min(0) M_t = np.eye(4) M_t[:3, -1] = -min_coords rigid_transformation = M_t @ rigid_transformation coords_aug = np.floor(coords_aug - min_coords) inds, inds_reconstruct = sparse_quantize(coords_aug, return_index=True) #NOTE coords_aug, feats, labels = coords_aug[inds], feats[inds], labels[inds] #NOTE # #NOTE: # inds, inds_reconstruct, feats = sparse_quantize(coords_aug, feats=feats, return_index=True) # coords_aug, labels = coords_aug[inds], labels[inds] if return_ind: return coords_aug, feats, labels, np.array(inds_reconstruct), inds if link is not None: return coords_aug, feats, labels, np.array(inds_reconstruct), link[inds] return coords_aug, feats, labels, np.array(inds_reconstruct)