File size: 1,714 Bytes
073b014
4779018
073b014
 
 
 
 
a57990c
 
917e496
073b014
917e496
 
 
 
 
 
 
073b014
2b8fefd
073b014
836d09e
 
 
073b014
 
8add0d0
073b014
 
 
 
 
 
 
 
5fbc9ed
073b014
 
 
 
 
 
 
 
 
 
 
 
5701657
073b014
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
import gradio as gr
from transformers import Wav2Vec2FeatureExtractor
from datasets import Dataset
import librosa

def get_emotion(microphone, file_upload, task):
    
    feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-large-superb-er")
    warn_output = ""
    
    if (microphone is not None) and (file_upload is not None):
        warn_output = (
            "WARNING: You've uploaded an audio file and used the microphone. "
            "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
        )
    elif (microphone is None) and (file_upload is None):
        return "ERROR: You have to either use the microphone or upload an audio file"

    model = torch.load('model.pth', map_location=torch.device('cpu'))
    file = microphone if microphone is not None else file_upload
    speech, _ = librosa.load(file, sr=16000, mono=True)
    test = feature_extractor(speech, sampling_rate=16000, padding=True, return_tensors="pt" )       
    
    logits = model(**test).logits
    predicted_ids = torch.argmax(logits, dim=-1)
    labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()]
    return labels

demo = gr.Blocks()

mf_transcribe = gr.Interface(
    fn=get_emotion,
    inputs=[
        gr.inputs.Audio(source="microphone", type="filepath", optional=True),
        gr.inputs.Audio(source="upload", type="filepath", optional=True),
    ],
    outputs="text",
    layout="horizontal",
    theme="huggingface",
    title="AER",
    description=(
        "get the emotion"
    ),
    allow_flagging="never",
)

with demo:
    gr.TabbedInterface([mf_transcribe],'Trancribe')
demo.launch(enable_queue=True)