Zled commited on
Commit
073b014
1 Parent(s): d94a017

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -0
app.py CHANGED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import gradio
3
+ from transformers import Wav2Vec2FeatureExtractor
4
+ from datasets import Dataset
5
+ import librosa
6
+
7
+ feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/hubert-large-superb-er")
8
+
9
+ def get_emotion(microphone, file_upload, task):
10
+ warn_output = ""
11
+
12
+ if (microphone is not None) and (file_upload is not None):
13
+ warn_output = (
14
+ "WARNING: You've uploaded an audio file and used the microphone. "
15
+ "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
16
+ )
17
+ elif (microphone is None) and (file_upload is None):
18
+ return "ERROR: You have to either use the microphone or upload an audio file"
19
+
20
+ file = microphone if microphone is not None else file_upload
21
+ test = feature_extractor(file, sampling_rate=16000, padding=True, return_tensors="pt" ).to(torch.float32)
22
+ logits = model(**test).logits
23
+ predicted_ids = torch.argmax(logits, dim=-1)
24
+ labels = [model.config.id2label[_id] for _id in predicated_ids.tolist()]
25
+ return labels
26
+
27
+ demo = gr.Blocks()
28
+
29
+ mf_transcribe = gr.Interface(
30
+ fn=get_emotion,
31
+ inputs=[
32
+ gr.inputs.Audio(source="microphone", type="filepath", optional=True),
33
+ gr.inputs.Audio(source="upload", type="filepath", optional=True),,
34
+ ],
35
+ outputs="text",
36
+ layout="horizontal",
37
+ theme="huggingface",
38
+ title="AER",
39
+ description=(
40
+ "get the emotion"
41
+ ),
42
+ allow_flagging="never",
43
+ )
44
+
45
+ with demo:
46
+ gr.TabbledInterface([mf_transcribe],'Trancribe')
47
+ demo.launch(enable_queue=True)