File size: 18,971 Bytes
5e9cd1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import os
import urllib
from fastapi import File, Form, Body, Query, UploadFile
from configs import (DEFAULT_VS_TYPE, EMBEDDING_MODEL,
                     VECTOR_SEARCH_TOP_K, SCORE_THRESHOLD,
                     CHUNK_SIZE, OVERLAP_SIZE, ZH_TITLE_ENHANCE,
                     logger, log_verbose, )
from server.utils import BaseResponse, ListResponse, run_in_thread_pool
from server.knowledge_base.utils import (validate_kb_name, list_files_from_folder, get_file_path,
                                         files2docs_in_thread, KnowledgeFile)
from fastapi.responses import FileResponse
from sse_starlette import EventSourceResponse
from pydantic import Json
import json
from server.knowledge_base.kb_service.base import KBServiceFactory
from server.db.repository.knowledge_file_repository import get_file_detail
from langchain.docstore.document import Document
from server.knowledge_base.model.kb_document_model import DocumentWithVSId
from typing import List, Dict


def search_docs(
        query: str = Body("", description="用户输入", examples=["你好"]),
        knowledge_base_name: str = Body(..., description="知识库名称", examples=["samples"]),
        top_k: int = Body(VECTOR_SEARCH_TOP_K, description="匹配向量数"),
        score_threshold: float = Body(SCORE_THRESHOLD,
                                      description="知识库匹配相关度阈值,取值范围在0-1之间,"
                                                  "SCORE越小,相关度越高,"
                                                  "取到1相当于不筛选,建议设置在0.5左右",
                                      ge=0, le=1),
        file_name: str = Body("", description="文件名称,支持 sql 通配符"),
        metadata: dict = Body({}, description="根据 metadata 进行过滤,仅支持一级键"),
) -> List[DocumentWithVSId]:
    kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
    data = []
    if kb is not None:
        if query:
            docs = kb.search_docs(query, top_k, score_threshold)
            data = [DocumentWithVSId(**x[0].dict(), score=x[1], id=x[0].metadata.get("id")) for x in docs]
        elif file_name or metadata:
            data = kb.list_docs(file_name=file_name, metadata=metadata)
    return data


def update_docs_by_id(
        knowledge_base_name: str = Body(..., description="知识库名称", examples=["samples"]),
        docs: Dict[str, Document] = Body(..., description="要更新的文档内容,形如:{id: Document, ...}")
) -> BaseResponse:
    '''
    按照文档 ID 更新文档内容
    '''
    kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
    if kb is None:
        return BaseResponse(code=500, msg=f"指定的知识库 {knowledge_base_name} 不存在")
    if kb.update_doc_by_ids(docs=docs):
        return BaseResponse(msg=f"文档更新成功")
    else:
        return BaseResponse(msg=f"文档更新失败")


def list_files(
        knowledge_base_name: str
) -> ListResponse:
    if not validate_kb_name(knowledge_base_name):
        return ListResponse(code=403, msg="Don't attack me", data=[])

    knowledge_base_name = urllib.parse.unquote(knowledge_base_name)
    kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
    if kb is None:
        return ListResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}", data=[])
    else:
        all_doc_names = kb.list_files()
        return ListResponse(data=all_doc_names)


def _save_files_in_thread(files: List[UploadFile],
                          knowledge_base_name: str,
                          override: bool):
    """
    通过多线程将上传的文件保存到对应知识库目录内。
    生成器返回保存结果:{"code":200, "msg": "xxx", "data": {"knowledge_base_name":"xxx", "file_name": "xxx"}}
    """

    def save_file(file: UploadFile, knowledge_base_name: str, override: bool) -> dict:
        '''
        保存单个文件。
        '''
        try:
            filename = file.filename
            file_path = get_file_path(knowledge_base_name=knowledge_base_name, doc_name=filename)
            data = {"knowledge_base_name": knowledge_base_name, "file_name": filename}

            file_content = file.file.read()  # 读取上传文件的内容
            if (os.path.isfile(file_path)
                    and not override
                    and os.path.getsize(file_path) == len(file_content)
            ):
                file_status = f"文件 {filename} 已存在。"
                logger.warn(file_status)
                return dict(code=404, msg=file_status, data=data)

            if not os.path.isdir(os.path.dirname(file_path)):
                os.makedirs(os.path.dirname(file_path))
            with open(file_path, "wb") as f:
                f.write(file_content)
            return dict(code=200, msg=f"成功上传文件 {filename}", data=data)
        except Exception as e:
            msg = f"{filename} 文件上传失败,报错信息为: {e}"
            logger.error(f'{e.__class__.__name__}: {msg}',
                         exc_info=e if log_verbose else None)
            return dict(code=500, msg=msg, data=data)

    params = [{"file": file, "knowledge_base_name": knowledge_base_name, "override": override} for file in files]
    for result in run_in_thread_pool(save_file, params=params):
        yield result


# def files2docs(files: List[UploadFile] = File(..., description="上传文件,支持多文件"),
#                 knowledge_base_name: str = Form(..., description="知识库名称", examples=["samples"]),
#                 override: bool = Form(False, description="覆盖已有文件"),
#                 save: bool = Form(True, description="是否将文件保存到知识库目录")):
#     def save_files(files, knowledge_base_name, override):
#         for result in _save_files_in_thread(files, knowledge_base_name=knowledge_base_name, override=override):
#             yield json.dumps(result, ensure_ascii=False)

#     def files_to_docs(files):
#         for result in files2docs_in_thread(files):
#             yield json.dumps(result, ensure_ascii=False)


def upload_docs(
        files: List[UploadFile] = File(..., description="上传文件,支持多文件"),
        knowledge_base_name: str = Form(..., description="知识库名称", examples=["samples"]),
        override: bool = Form(False, description="覆盖已有文件"),
        to_vector_store: bool = Form(True, description="上传文件后是否进行向量化"),
        chunk_size: int = Form(CHUNK_SIZE, description="知识库中单段文本最大长度"),
        chunk_overlap: int = Form(OVERLAP_SIZE, description="知识库中相邻文本重合长度"),
        zh_title_enhance: bool = Form(ZH_TITLE_ENHANCE, description="是否开启中文标题加强"),
        docs: Json = Form({}, description="自定义的docs,需要转为json字符串",
                          examples=[{"test.txt": [Document(page_content="custom doc")]}]),
        not_refresh_vs_cache: bool = Form(False, description="暂不保存向量库(用于FAISS)"),
) -> BaseResponse:
    """
    API接口:上传文件,并/或向量化
    """
    if not validate_kb_name(knowledge_base_name):
        return BaseResponse(code=403, msg="Don't attack me")

    kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
    if kb is None:
        return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")

    failed_files = {}
    file_names = list(docs.keys())

    # 先将上传的文件保存到磁盘
    for result in _save_files_in_thread(files, knowledge_base_name=knowledge_base_name, override=override):
        filename = result["data"]["file_name"]
        if result["code"] != 200:
            failed_files[filename] = result["msg"]

        if filename not in file_names:
            file_names.append(filename)

    # 对保存的文件进行向量化
    if to_vector_store:
        result = update_docs(
            knowledge_base_name=knowledge_base_name,
            file_names=file_names,
            override_custom_docs=True,
            chunk_size=chunk_size,
            chunk_overlap=chunk_overlap,
            zh_title_enhance=zh_title_enhance,
            docs=docs,
            not_refresh_vs_cache=True,
        )
        failed_files.update(result.data["failed_files"])
        if not not_refresh_vs_cache:
            kb.save_vector_store()

    return BaseResponse(code=200, msg="文件上传与向量化完成", data={"failed_files": failed_files})


def delete_docs(
        knowledge_base_name: str = Body(..., examples=["samples"]),
        file_names: List[str] = Body(..., examples=[["file_name.md", "test.txt"]]),
        delete_content: bool = Body(False),
        not_refresh_vs_cache: bool = Body(False, description="暂不保存向量库(用于FAISS)"),
) -> BaseResponse:
    if not validate_kb_name(knowledge_base_name):
        return BaseResponse(code=403, msg="Don't attack me")

    knowledge_base_name = urllib.parse.unquote(knowledge_base_name)
    kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
    if kb is None:
        return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")

    failed_files = {}
    for file_name in file_names:
        if not kb.exist_doc(file_name):
            failed_files[file_name] = f"未找到文件 {file_name}"

        try:
            kb_file = KnowledgeFile(filename=file_name,
                                    knowledge_base_name=knowledge_base_name)
            kb.delete_doc(kb_file, delete_content, not_refresh_vs_cache=True)
        except Exception as e:
            msg = f"{file_name} 文件删除失败,错误信息:{e}"
            logger.error(f'{e.__class__.__name__}: {msg}',
                         exc_info=e if log_verbose else None)
            failed_files[file_name] = msg

    if not not_refresh_vs_cache:
        kb.save_vector_store()

    return BaseResponse(code=200, msg=f"文件删除完成", data={"failed_files": failed_files})


def update_info(
        knowledge_base_name: str = Body(..., description="知识库名称", examples=["samples"]),
        kb_info: str = Body(..., description="知识库介绍", examples=["这是一个知识库"]),
):
    if not validate_kb_name(knowledge_base_name):
        return BaseResponse(code=403, msg="Don't attack me")

    kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
    if kb is None:
        return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")
    kb.update_info(kb_info)

    return BaseResponse(code=200, msg=f"知识库介绍修改完成", data={"kb_info": kb_info})


def update_docs(
        knowledge_base_name: str = Body(..., description="知识库名称", examples=["samples"]),
        file_names: List[str] = Body(..., description="文件名称,支持多文件", examples=[["file_name1", "text.txt"]]),
        chunk_size: int = Body(CHUNK_SIZE, description="知识库中单段文本最大长度"),
        chunk_overlap: int = Body(OVERLAP_SIZE, description="知识库中相邻文本重合长度"),
        zh_title_enhance: bool = Body(ZH_TITLE_ENHANCE, description="是否开启中文标题加强"),
        override_custom_docs: bool = Body(False, description="是否覆盖之前自定义的docs"),
        docs: Json = Body({}, description="自定义的docs,需要转为json字符串",
                          examples=[{"test.txt": [Document(page_content="custom doc")]}]),
        not_refresh_vs_cache: bool = Body(False, description="暂不保存向量库(用于FAISS)"),
) -> BaseResponse:
    """
    更新知识库文档
    """
    if not validate_kb_name(knowledge_base_name):
        return BaseResponse(code=403, msg="Don't attack me")

    kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
    if kb is None:
        return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")

    failed_files = {}
    kb_files = []

    # 生成需要加载docs的文件列表
    for file_name in file_names:
        file_detail = get_file_detail(kb_name=knowledge_base_name, filename=file_name)
        # 如果该文件之前使用了自定义docs,则根据参数决定略过或覆盖
        if file_detail.get("custom_docs") and not override_custom_docs:
            continue
        if file_name not in docs:
            try:
                kb_files.append(KnowledgeFile(filename=file_name, knowledge_base_name=knowledge_base_name))
            except Exception as e:
                msg = f"加载文档 {file_name} 时出错:{e}"
                logger.error(f'{e.__class__.__name__}: {msg}',
                             exc_info=e if log_verbose else None)
                failed_files[file_name] = msg

    # 从文件生成docs,并进行向量化。
    # 这里利用了KnowledgeFile的缓存功能,在多线程中加载Document,然后传给KnowledgeFile
    for status, result in files2docs_in_thread(kb_files,
                                               chunk_size=chunk_size,
                                               chunk_overlap=chunk_overlap,
                                               zh_title_enhance=zh_title_enhance):
        if status:
            kb_name, file_name, new_docs = result
            kb_file = KnowledgeFile(filename=file_name,
                                    knowledge_base_name=knowledge_base_name)
            kb_file.splited_docs = new_docs
            kb.update_doc(kb_file, not_refresh_vs_cache=True)
        else:
            kb_name, file_name, error = result
            failed_files[file_name] = error

    # 将自定义的docs进行向量化
    for file_name, v in docs.items():
        try:
            v = [x if isinstance(x, Document) else Document(**x) for x in v]
            kb_file = KnowledgeFile(filename=file_name, knowledge_base_name=knowledge_base_name)
            kb.update_doc(kb_file, docs=v, not_refresh_vs_cache=True)
        except Exception as e:
            msg = f"为 {file_name} 添加自定义docs时出错:{e}"
            logger.error(f'{e.__class__.__name__}: {msg}',
                         exc_info=e if log_verbose else None)
            failed_files[file_name] = msg

    if not not_refresh_vs_cache:
        kb.save_vector_store()

    return BaseResponse(code=200, msg=f"更新文档完成", data={"failed_files": failed_files})


def download_doc(
        knowledge_base_name: str = Query(..., description="知识库名称", examples=["samples"]),
        file_name: str = Query(..., description="文件名称", examples=["test.txt"]),
        preview: bool = Query(False, description="是:浏览器内预览;否:下载"),
):
    """
    下载知识库文档
    """
    if not validate_kb_name(knowledge_base_name):
        return BaseResponse(code=403, msg="Don't attack me")

    kb = KBServiceFactory.get_service_by_name(knowledge_base_name)
    if kb is None:
        return BaseResponse(code=404, msg=f"未找到知识库 {knowledge_base_name}")

    if preview:
        content_disposition_type = "inline"
    else:
        content_disposition_type = None

    try:
        kb_file = KnowledgeFile(filename=file_name,
                                knowledge_base_name=knowledge_base_name)

        if os.path.exists(kb_file.filepath):
            return FileResponse(
                path=kb_file.filepath,
                filename=kb_file.filename,
                media_type="multipart/form-data",
                content_disposition_type=content_disposition_type,
            )
    except Exception as e:
        msg = f"{kb_file.filename} 读取文件失败,错误信息是:{e}"
        logger.error(f'{e.__class__.__name__}: {msg}',
                     exc_info=e if log_verbose else None)
        return BaseResponse(code=500, msg=msg)

    return BaseResponse(code=500, msg=f"{kb_file.filename} 读取文件失败")


def recreate_vector_store(
        knowledge_base_name: str = Body(..., examples=["samples"]),
        allow_empty_kb: bool = Body(True),
        vs_type: str = Body(DEFAULT_VS_TYPE),
        embed_model: str = Body(EMBEDDING_MODEL),
        chunk_size: int = Body(CHUNK_SIZE, description="知识库中单段文本最大长度"),
        chunk_overlap: int = Body(OVERLAP_SIZE, description="知识库中相邻文本重合长度"),
        zh_title_enhance: bool = Body(ZH_TITLE_ENHANCE, description="是否开启中文标题加强"),
        not_refresh_vs_cache: bool = Body(False, description="暂不保存向量库(用于FAISS)"),
):
    """
    recreate vector store from the content.
    this is usefull when user can copy files to content folder directly instead of upload through network.
    by default, get_service_by_name only return knowledge base in the info.db and having document files in it.
    set allow_empty_kb to True make it applied on empty knowledge base which it not in the info.db or having no documents.
    """

    def output():
        kb = KBServiceFactory.get_service(knowledge_base_name, vs_type, embed_model)
        if not kb.exists() and not allow_empty_kb:
            yield {"code": 404, "msg": f"未找到知识库 ‘{knowledge_base_name}’"}
        else:
            if kb.exists():
                kb.clear_vs()
            kb.create_kb()
            files = list_files_from_folder(knowledge_base_name)
            kb_files = [(file, knowledge_base_name) for file in files]
            i = 0
            for status, result in files2docs_in_thread(kb_files,
                                                       chunk_size=chunk_size,
                                                       chunk_overlap=chunk_overlap,
                                                       zh_title_enhance=zh_title_enhance):
                if status:
                    kb_name, file_name, docs = result
                    kb_file = KnowledgeFile(filename=file_name, knowledge_base_name=kb_name)
                    kb_file.splited_docs = docs
                    yield json.dumps({
                        "code": 200,
                        "msg": f"({i + 1} / {len(files)}): {file_name}",
                        "total": len(files),
                        "finished": i + 1,
                        "doc": file_name,
                    }, ensure_ascii=False)
                    kb.add_doc(kb_file, not_refresh_vs_cache=True)
                else:
                    kb_name, file_name, error = result
                    msg = f"添加文件‘{file_name}’到知识库‘{knowledge_base_name}’时出错:{error}。已跳过。"
                    logger.error(msg)
                    yield json.dumps({
                        "code": 500,
                        "msg": msg,
                    })
                i += 1
            if not not_refresh_vs_cache:
                kb.save_vector_store()

    return EventSourceResponse(output())