File size: 6,712 Bytes
5e9cd1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from fastchat.conversation import Conversation
from server.model_workers.base import *
from fastchat import conversation as conv
import sys
import json
from server.model_workers.base import ApiEmbeddingsParams
from server.utils import get_httpx_client
from typing import List, Dict
from configs import logger, log_verbose


class MiniMaxWorker(ApiModelWorker):
    DEFAULT_EMBED_MODEL = "embo-01"

    def __init__(
        self,
        *,
        model_names: List[str] = ["minimax-api"],
        controller_addr: str = None,
        worker_addr: str = None,
        version: str = "abab5.5-chat",
        **kwargs,
    ):
        kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
        kwargs.setdefault("context_len", 16384)
        super().__init__(**kwargs)
        self.version = version

    def validate_messages(self, messages: List[Dict]) -> List[Dict]:
        role_maps = {
            "USER": self.user_role,
            "assistant": self.ai_role,
            "system": "system",
        }
        messages = [{"sender_type": role_maps[x["role"]], "text": x["content"]} for x in messages]
        return messages

    def do_chat(self, params: ApiChatParams) -> Dict:
        # 按照官网推荐,直接调用abab 5.5模型
        params.load_config(self.model_names[0])

        url = 'https://api.minimax.chat/v1/text/chatcompletion{pro}?GroupId={group_id}'
        pro = "_pro" if params.is_pro else ""
        headers = {
            "Authorization": f"Bearer {params.api_key}",
            "Content-Type": "application/json",
        }
        messages = self.validate_messages(params.messages)
        data = {
            "model": params.version,
            "stream": True,
            "mask_sensitive_info": True,
            "messages": messages,
            "temperature": params.temperature,
            "top_p": params.top_p,
            "tokens_to_generate": params.max_tokens or 1024,
            # 以下参数为minimax特有,传入空值会出错。
            # "prompt": params.system_message or self.conv.system_message,
            # "bot_setting": [],
            # "role_meta": params.role_meta,
        }
        if log_verbose:
            logger.info(f'{self.__class__.__name__}:data: {data}')
            logger.info(f'{self.__class__.__name__}:url: {url.format(pro=pro, group_id=params.group_id)}')
            logger.info(f'{self.__class__.__name__}:headers: {headers}')

        with get_httpx_client() as client:
            response = client.stream("POST",
                                    url.format(pro=pro, group_id=params.group_id),
                                    headers=headers,
                                    json=data)
            with response as r:
                text = ""
                for e in r.iter_text():
                    if not e.startswith("data: "):
                        data = {
                                "error_code": 500,
                                "text": f"minimax返回错误的结果:{e}",
                                "error": {
                                    "message":  f"minimax返回错误的结果:{e}",
                                    "type": "invalid_request_error",
                                    "param": None,
                                    "code": None,
                                }
                        }
                        self.logger.error(f"请求 MiniMax API 时发生错误:{data}")
                        yield data
                        continue

                    data = json.loads(e[6:])
                    if data.get("usage"):
                        break

                    if choices := data.get("choices"):
                        if chunk := choices[0].get("delta", ""):
                            text += chunk
                            yield {"error_code": 0, "text": text}

    def do_embeddings(self, params: ApiEmbeddingsParams) -> Dict:
        params.load_config(self.model_names[0])
        url = f"https://api.minimax.chat/v1/embeddings?GroupId={params.group_id}"

        headers = {
            "Authorization": f"Bearer {params.api_key}",
            "Content-Type": "application/json",
        }

        data = {
            "model": params.embed_model or self.DEFAULT_EMBED_MODEL,
            "texts": [],
            "type": "query" if params.to_query else "db",
        }
        if log_verbose:
            logger.info(f'{self.__class__.__name__}:data: {data}')
            logger.info(f'{self.__class__.__name__}:url: {url}')
            logger.info(f'{self.__class__.__name__}:headers: {headers}')

        with get_httpx_client() as client:
            result = []
            i = 0
            batch_size = 10
            while i < len(params.texts):
                texts = params.texts[i:i+batch_size]
                data["texts"] = texts
                r = client.post(url, headers=headers, json=data).json()
                if embeddings := r.get("vectors"):
                    result += embeddings
                elif error := r.get("base_resp"):
                    data = {
                                "code": error["status_code"],
                                "msg": error["status_msg"],
                                "error": {
                                    "message":  error["status_msg"],
                                    "type": "invalid_request_error",
                                    "param": None,
                                    "code": None,
                                }
                            }
                    self.logger.error(f"请求 MiniMax API 时发生错误:{data}")
                    return data
                i += batch_size
            return {"code": 200, "data": result}

    def get_embeddings(self, params):
        print("embedding")
        print(params)

    def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation:
        return conv.Conversation(
            name=self.model_names[0],
            system_message="你是MiniMax自主研发的大型语言模型,回答问题简洁有条理。",
            messages=[],
            roles=["USER", "BOT"],
            sep="\n### ",
            stop_str="###",
        )


if __name__ == "__main__":
    import uvicorn
    from server.utils import MakeFastAPIOffline
    from fastchat.serve.model_worker import app

    worker = MiniMaxWorker(
        controller_addr="http://127.0.0.1:20001",
        worker_addr="http://127.0.0.1:21002",
    )
    sys.modules["fastchat.serve.model_worker"].worker = worker
    MakeFastAPIOffline(app)
    uvicorn.run(app, port=21002)