Spaces:
Running
Running
""" | |
调用示例: python llm_api_stale.py --model-path-address THUDM/chatglm2-6b@localhost@7650 THUDM/chatglm2-6b-32k@localhost@7651 | |
其他fastchat.server.controller/worker/openai_api_server参数可按照fastchat文档调用 | |
但少数非关键参数如--worker-address,--allowed-origins,--allowed-methods,--allowed-headers不支持 | |
""" | |
import sys | |
import os | |
sys.path.append(os.path.dirname(os.path.dirname(__file__))) | |
import subprocess | |
import re | |
import logging | |
import argparse | |
LOG_PATH = "./logs/" | |
LOG_FORMAT = "%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s" | |
logger = logging.getLogger() | |
logger.setLevel(logging.INFO) | |
logging.basicConfig(format=LOG_FORMAT) | |
parser = argparse.ArgumentParser() | |
# ------multi worker----------------- | |
parser.add_argument('--model-path-address', | |
default="THUDM/chatglm2-6b@localhost@20002", | |
nargs="+", | |
type=str, | |
help="model path, host, and port, formatted as model-path@host@port") | |
# ---------------controller------------------------- | |
parser.add_argument("--controller-host", type=str, default="localhost") | |
parser.add_argument("--controller-port", type=int, default=21001) | |
parser.add_argument( | |
"--dispatch-method", | |
type=str, | |
choices=["lottery", "shortest_queue"], | |
default="shortest_queue", | |
) | |
controller_args = ["controller-host", "controller-port", "dispatch-method"] | |
# ----------------------worker------------------------------------------ | |
parser.add_argument("--worker-host", type=str, default="localhost") | |
parser.add_argument("--worker-port", type=int, default=21002) | |
# parser.add_argument("--worker-address", type=str, default="http://localhost:21002") | |
# parser.add_argument( | |
# "--controller-address", type=str, default="http://localhost:21001" | |
# ) | |
parser.add_argument( | |
"--model-path", | |
type=str, | |
default="lmsys/vicuna-7b-v1.3", | |
help="The path to the weights. This can be a local folder or a Hugging Face repo ID.", | |
) | |
parser.add_argument( | |
"--revision", | |
type=str, | |
default="main", | |
help="Hugging Face Hub model revision identifier", | |
) | |
parser.add_argument( | |
"--device", | |
type=str, | |
choices=["cpu", "cuda", "mps", "xpu"], | |
default="cuda", | |
help="The device type", | |
) | |
parser.add_argument( | |
"--gpus", | |
type=str, | |
default="0", | |
help="A single GPU like 1 or multiple GPUs like 0,2", | |
) | |
parser.add_argument("--num-gpus", type=int, default=1) | |
parser.add_argument( | |
"--max-gpu-memory", | |
type=str, | |
default="20GiB", | |
help="The maximum memory per gpu. Use a string like '13Gib'", | |
) | |
parser.add_argument( | |
"--load-8bit", action="store_true", help="Use 8-bit quantization" | |
) | |
parser.add_argument( | |
"--cpu-offloading", | |
action="store_true", | |
help="Only when using 8-bit quantization: Offload excess weights to the CPU that don't fit on the GPU", | |
) | |
parser.add_argument( | |
"--gptq-ckpt", | |
type=str, | |
default=None, | |
help="Load quantized model. The path to the local GPTQ checkpoint.", | |
) | |
parser.add_argument( | |
"--gptq-wbits", | |
type=int, | |
default=16, | |
choices=[2, 3, 4, 8, 16], | |
help="#bits to use for quantization", | |
) | |
parser.add_argument( | |
"--gptq-groupsize", | |
type=int, | |
default=-1, | |
help="Groupsize to use for quantization; default uses full row.", | |
) | |
parser.add_argument( | |
"--gptq-act-order", | |
action="store_true", | |
help="Whether to apply the activation order GPTQ heuristic", | |
) | |
parser.add_argument( | |
"--model-names", | |
type=lambda s: s.split(","), | |
help="Optional display comma separated names", | |
) | |
parser.add_argument( | |
"--limit-worker-concurrency", | |
type=int, | |
default=5, | |
help="Limit the model concurrency to prevent OOM.", | |
) | |
parser.add_argument("--stream-interval", type=int, default=2) | |
parser.add_argument("--no-register", action="store_true") | |
worker_args = [ | |
"worker-host", "worker-port", | |
"model-path", "revision", "device", "gpus", "num-gpus", | |
"max-gpu-memory", "load-8bit", "cpu-offloading", | |
"gptq-ckpt", "gptq-wbits", "gptq-groupsize", | |
"gptq-act-order", "model-names", "limit-worker-concurrency", | |
"stream-interval", "no-register", | |
"controller-address", "worker-address" | |
] | |
# -----------------openai server--------------------------- | |
parser.add_argument("--server-host", type=str, default="localhost", help="host name") | |
parser.add_argument("--server-port", type=int, default=8888, help="port number") | |
parser.add_argument( | |
"--allow-credentials", action="store_true", help="allow credentials" | |
) | |
# parser.add_argument( | |
# "--allowed-origins", type=json.loads, default=["*"], help="allowed origins" | |
# ) | |
# parser.add_argument( | |
# "--allowed-methods", type=json.loads, default=["*"], help="allowed methods" | |
# ) | |
# parser.add_argument( | |
# "--allowed-headers", type=json.loads, default=["*"], help="allowed headers" | |
# ) | |
parser.add_argument( | |
"--api-keys", | |
type=lambda s: s.split(","), | |
help="Optional list of comma separated API keys", | |
) | |
server_args = ["server-host", "server-port", "allow-credentials", "api-keys", | |
"controller-address" | |
] | |
# 0,controller, model_worker, openai_api_server | |
# 1, 命令行选项 | |
# 2,LOG_PATH | |
# 3, log的文件名 | |
base_launch_sh = "nohup python3 -m fastchat.serve.{0} {1} >{2}/{3}.log 2>&1 &" | |
# 0 log_path | |
# ! 1 log的文件名,必须与bash_launch_sh一致 | |
# 2 controller, worker, openai_api_server | |
base_check_sh = """while [ `grep -c "Uvicorn running on" {0}/{1}.log` -eq '0' ];do | |
sleep 5s; | |
echo "wait {2} running" | |
done | |
echo '{2} running' """ | |
def string_args(args, args_list): | |
"""将args中的key转化为字符串""" | |
args_str = "" | |
for key, value in args._get_kwargs(): | |
# args._get_kwargs中的key以_为分隔符,先转换,再判断是否在指定的args列表中 | |
key = key.replace("_", "-") | |
if key not in args_list: | |
continue | |
# fastchat中port,host没有前缀,去除前缀 | |
key = key.split("-")[-1] if re.search("port|host", key) else key | |
if not value: | |
pass | |
# 1==True -> True | |
elif isinstance(value, bool) and value == True: | |
args_str += f" --{key} " | |
elif isinstance(value, list) or isinstance(value, tuple) or isinstance(value, set): | |
value = " ".join(value) | |
args_str += f" --{key} {value} " | |
else: | |
args_str += f" --{key} {value} " | |
return args_str | |
def launch_worker(item, args, worker_args=worker_args): | |
log_name = item.split("/")[-1].split("\\")[-1].replace("-", "_").replace("@", "_").replace(".", "_") | |
# 先分割model-path-address,在传到string_args中分析参数 | |
args.model_path, args.worker_host, args.worker_port = item.split("@") | |
args.worker_address = f"http://{args.worker_host}:{args.worker_port}" | |
print("*" * 80) | |
print(f"如长时间未启动,请到{LOG_PATH}{log_name}.log下查看日志") | |
worker_str_args = string_args(args, worker_args) | |
print(worker_str_args) | |
worker_sh = base_launch_sh.format("model_worker", worker_str_args, LOG_PATH, f"worker_{log_name}") | |
worker_check_sh = base_check_sh.format(LOG_PATH, f"worker_{log_name}", "model_worker") | |
subprocess.run(worker_sh, shell=True, check=True) | |
subprocess.run(worker_check_sh, shell=True, check=True) | |
def launch_all(args, | |
controller_args=controller_args, | |
worker_args=worker_args, | |
server_args=server_args | |
): | |
print(f"Launching llm service,logs are located in {LOG_PATH}...") | |
print(f"开始启动LLM服务,请到{LOG_PATH}下监控各模块日志...") | |
controller_str_args = string_args(args, controller_args) | |
controller_sh = base_launch_sh.format("controller", controller_str_args, LOG_PATH, "controller") | |
controller_check_sh = base_check_sh.format(LOG_PATH, "controller", "controller") | |
subprocess.run(controller_sh, shell=True, check=True) | |
subprocess.run(controller_check_sh, shell=True, check=True) | |
print(f"worker启动时间视设备不同而不同,约需3-10分钟,请耐心等待...") | |
if isinstance(args.model_path_address, str): | |
launch_worker(args.model_path_address, args=args, worker_args=worker_args) | |
else: | |
for idx, item in enumerate(args.model_path_address): | |
print(f"开始加载第{idx}个模型:{item}") | |
launch_worker(item, args=args, worker_args=worker_args) | |
server_str_args = string_args(args, server_args) | |
server_sh = base_launch_sh.format("openai_api_server", server_str_args, LOG_PATH, "openai_api_server") | |
server_check_sh = base_check_sh.format(LOG_PATH, "openai_api_server", "openai_api_server") | |
subprocess.run(server_sh, shell=True, check=True) | |
subprocess.run(server_check_sh, shell=True, check=True) | |
print("Launching LLM service done!") | |
print("LLM服务启动完毕。") | |
if __name__ == "__main__": | |
args = parser.parse_args() | |
# 必须要加http//:,否则InvalidSchema: No connection adapters were found | |
args = argparse.Namespace(**vars(args), | |
**{"controller-address": f"http://{args.controller_host}:{str(args.controller_port)}"}) | |
if args.gpus: | |
if len(args.gpus.split(",")) < args.num_gpus: | |
raise ValueError( | |
f"Larger --num-gpus ({args.num_gpus}) than --gpus {args.gpus}!" | |
) | |
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus | |
launch_all(args=args) | |