Spaces:
Running
Running
from __future__ import annotations | |
from langchain.agents import Tool, AgentOutputParser | |
from langchain.prompts import StringPromptTemplate | |
from typing import List | |
from langchain.schema import AgentAction, AgentFinish | |
from configs import SUPPORT_AGENT_MODEL | |
from server.agent import model_container | |
class CustomPromptTemplate(StringPromptTemplate): | |
template: str | |
tools: List[Tool] | |
def format(self, **kwargs) -> str: | |
intermediate_steps = kwargs.pop("intermediate_steps") | |
thoughts = "" | |
for action, observation in intermediate_steps: | |
thoughts += action.log | |
thoughts += f"\nObservation: {observation}\nThought: " | |
kwargs["agent_scratchpad"] = thoughts | |
kwargs["tools"] = "\n".join([f"{tool.name}: {tool.description}" for tool in self.tools]) | |
kwargs["tool_names"] = ", ".join([tool.name for tool in self.tools]) | |
return self.template.format(**kwargs) | |
class CustomOutputParser(AgentOutputParser): | |
begin: bool = False | |
def __init__(self): | |
super().__init__() | |
self.begin = True | |
def parse(self, llm_output: str) -> AgentFinish | tuple[dict[str, str], str] | AgentAction: | |
if not any(agent in model_container.MODEL for agent in SUPPORT_AGENT_MODEL) and self.begin: | |
self.begin = False | |
stop_words = ["Observation:"] | |
min_index = len(llm_output) | |
for stop_word in stop_words: | |
index = llm_output.find(stop_word) | |
if index != -1 and index < min_index: | |
min_index = index | |
llm_output = llm_output[:min_index] | |
if "Final Answer:" in llm_output: | |
self.begin = True | |
return AgentFinish( | |
return_values={"output": llm_output.split("Final Answer:", 1)[-1].strip()}, | |
log=llm_output, | |
) | |
parts = llm_output.split("Action:") | |
if len(parts) < 2: | |
return AgentFinish( | |
return_values={"output": f"调用agent工具失败,该回答为大模型自身能力的回答:\n\n `{llm_output}`"}, | |
log=llm_output, | |
) | |
action = parts[1].split("Action Input:")[0].strip() | |
action_input = parts[1].split("Action Input:")[1].strip() | |
try: | |
ans = AgentAction( | |
tool=action, | |
tool_input=action_input.strip(" ").strip('"'), | |
log=llm_output | |
) | |
return ans | |
except: | |
return AgentFinish( | |
return_values={"output": f"调用agent失败: `{llm_output}`"}, | |
log=llm_output, | |
) | |