Spaces:
Running
Running
import logging | |
from typing import Any, List, Dict | |
from langchain.memory.chat_memory import BaseChatMemory | |
from langchain.schema import get_buffer_string, BaseMessage, HumanMessage, AIMessage | |
from langchain.schema.language_model import BaseLanguageModel | |
from server.db.repository.message_repository import filter_message | |
from server.db.models.message_model import MessageModel | |
class ConversationBufferDBMemory(BaseChatMemory): | |
conversation_id: str | |
human_prefix: str = "Human" | |
ai_prefix: str = "Assistant" | |
llm: BaseLanguageModel | |
memory_key: str = "history" | |
max_token_limit: int = 2000 | |
message_limit: int = 10 | |
def buffer(self) -> List[BaseMessage]: | |
"""String buffer of memory.""" | |
# fetch limited messages desc, and return reversed | |
messages = filter_message(conversation_id=self.conversation_id, limit=self.message_limit) | |
# 返回的记录按时间倒序,转为正序 | |
messages = list(reversed(messages)) | |
chat_messages: List[BaseMessage] = [] | |
for message in messages: | |
chat_messages.append(HumanMessage(content=message["query"])) | |
chat_messages.append(AIMessage(content=message["response"])) | |
if not chat_messages: | |
return [] | |
# prune the chat message if it exceeds the max token limit | |
curr_buffer_length = self.llm.get_num_tokens(get_buffer_string(chat_messages)) | |
if curr_buffer_length > self.max_token_limit: | |
pruned_memory = [] | |
while curr_buffer_length > self.max_token_limit and chat_messages: | |
pruned_memory.append(chat_messages.pop(0)) | |
curr_buffer_length = self.llm.get_num_tokens(get_buffer_string(chat_messages)) | |
return chat_messages | |
def memory_variables(self) -> List[str]: | |
"""Will always return list of memory variables. | |
:meta private: | |
""" | |
return [self.memory_key] | |
def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]: | |
"""Return history buffer.""" | |
buffer: Any = self.buffer | |
if self.return_messages: | |
final_buffer: Any = buffer | |
else: | |
final_buffer = get_buffer_string( | |
buffer, | |
human_prefix=self.human_prefix, | |
ai_prefix=self.ai_prefix, | |
) | |
return {self.memory_key: final_buffer} | |
def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None: | |
"""Nothing should be saved or changed""" | |
pass | |
def clear(self) -> None: | |
"""Nothing to clear, got a memory like a vault.""" | |
pass |