Spaces:
Running
Running
import os | |
import shutil | |
from configs import SCORE_THRESHOLD | |
from server.knowledge_base.kb_service.base import KBService, SupportedVSType, EmbeddingsFunAdapter | |
from server.knowledge_base.kb_cache.faiss_cache import kb_faiss_pool, ThreadSafeFaiss | |
from server.knowledge_base.utils import KnowledgeFile, get_kb_path, get_vs_path | |
from server.utils import torch_gc | |
from langchain.docstore.document import Document | |
from typing import List, Dict, Optional, Tuple | |
class FaissKBService(KBService): | |
vs_path: str | |
kb_path: str | |
vector_name: str = None | |
def vs_type(self) -> str: | |
return SupportedVSType.FAISS | |
def get_vs_path(self): | |
return get_vs_path(self.kb_name, self.vector_name) | |
def get_kb_path(self): | |
return get_kb_path(self.kb_name) | |
def load_vector_store(self) -> ThreadSafeFaiss: | |
return kb_faiss_pool.load_vector_store(kb_name=self.kb_name, | |
vector_name=self.vector_name, | |
embed_model=self.embed_model) | |
def save_vector_store(self): | |
self.load_vector_store().save(self.vs_path) | |
def get_doc_by_ids(self, ids: List[str]) -> List[Document]: | |
with self.load_vector_store().acquire() as vs: | |
return [vs.docstore._dict.get(id) for id in ids] | |
def del_doc_by_ids(self, ids: List[str]) -> bool: | |
with self.load_vector_store().acquire() as vs: | |
vs.delete(ids) | |
def do_init(self): | |
self.vector_name = self.vector_name or self.embed_model | |
self.kb_path = self.get_kb_path() | |
self.vs_path = self.get_vs_path() | |
def do_create_kb(self): | |
if not os.path.exists(self.vs_path): | |
os.makedirs(self.vs_path) | |
self.load_vector_store() | |
def do_drop_kb(self): | |
self.clear_vs() | |
try: | |
shutil.rmtree(self.kb_path) | |
except Exception: | |
... | |
def do_search(self, | |
query: str, | |
top_k: int, | |
score_threshold: float = SCORE_THRESHOLD, | |
) -> List[Tuple[Document, float]]: | |
embed_func = EmbeddingsFunAdapter(self.embed_model) | |
embeddings = embed_func.embed_query(query) | |
with self.load_vector_store().acquire() as vs: | |
docs = vs.similarity_search_with_score_by_vector(embeddings, k=top_k, score_threshold=score_threshold) | |
return docs | |
def do_add_doc(self, | |
docs: List[Document], | |
**kwargs, | |
) -> List[Dict]: | |
data = self._docs_to_embeddings(docs) # 将向量化单独出来可以减少向量库的锁定时间 | |
with self.load_vector_store().acquire() as vs: | |
ids = vs.add_embeddings(text_embeddings=zip(data["texts"], data["embeddings"]), | |
metadatas=data["metadatas"], | |
ids=kwargs.get("ids")) | |
if not kwargs.get("not_refresh_vs_cache"): | |
vs.save_local(self.vs_path) | |
doc_infos = [{"id": id, "metadata": doc.metadata} for id, doc in zip(ids, docs)] | |
torch_gc() | |
return doc_infos | |
def do_delete_doc(self, | |
kb_file: KnowledgeFile, | |
**kwargs): | |
with self.load_vector_store().acquire() as vs: | |
ids = [k for k, v in vs.docstore._dict.items() if v.metadata.get("source").lower() == kb_file.filename.lower()] | |
if len(ids) > 0: | |
vs.delete(ids) | |
if not kwargs.get("not_refresh_vs_cache"): | |
vs.save_local(self.vs_path) | |
return ids | |
def do_clear_vs(self): | |
with kb_faiss_pool.atomic: | |
kb_faiss_pool.pop((self.kb_name, self.vector_name)) | |
try: | |
shutil.rmtree(self.vs_path) | |
except Exception: | |
... | |
os.makedirs(self.vs_path, exist_ok=True) | |
def exist_doc(self, file_name: str): | |
if super().exist_doc(file_name): | |
return "in_db" | |
content_path = os.path.join(self.kb_path, "content") | |
if os.path.isfile(os.path.join(content_path, file_name)): | |
return "in_folder" | |
else: | |
return False | |
if __name__ == '__main__': | |
faissService = FaissKBService("test") | |
faissService.add_doc(KnowledgeFile("README.md", "test")) | |
faissService.delete_doc(KnowledgeFile("README.md", "test")) | |
faissService.do_drop_kb() | |
print(faissService.search_docs("如何启动api服务")) | |