Spaces:
Running
Running
from fastchat.conversation import Conversation | |
from configs import LOG_PATH, TEMPERATURE | |
import fastchat.constants | |
fastchat.constants.LOGDIR = LOG_PATH | |
from fastchat.serve.base_model_worker import BaseModelWorker | |
import uuid | |
import json | |
import sys | |
from pydantic import BaseModel, root_validator | |
import fastchat | |
import asyncio | |
from server.utils import get_model_worker_config | |
from typing import Dict, List, Optional | |
__all__ = ["ApiModelWorker", "ApiChatParams", "ApiCompletionParams", "ApiEmbeddingsParams"] | |
class ApiConfigParams(BaseModel): | |
''' | |
在线API配置参数,未提供的值会自动从model_config.ONLINE_LLM_MODEL中读取 | |
''' | |
api_base_url: Optional[str] = None | |
api_proxy: Optional[str] = None | |
api_key: Optional[str] = None | |
secret_key: Optional[str] = None | |
group_id: Optional[str] = None # for minimax | |
is_pro: bool = False # for minimax | |
APPID: Optional[str] = None # for xinghuo | |
APISecret: Optional[str] = None # for xinghuo | |
is_v2: bool = False # for xinghuo | |
worker_name: Optional[str] = None | |
class Config: | |
extra = "allow" | |
def validate_config(cls, v: Dict) -> Dict: | |
if config := get_model_worker_config(v.get("worker_name")): | |
for n in cls.__fields__: | |
if n in config: | |
v[n] = config[n] | |
return v | |
def load_config(self, worker_name: str): | |
self.worker_name = worker_name | |
if config := get_model_worker_config(worker_name): | |
for n in self.__fields__: | |
if n in config: | |
setattr(self, n, config[n]) | |
return self | |
class ApiModelParams(ApiConfigParams): | |
''' | |
模型配置参数 | |
''' | |
version: Optional[str] = None | |
version_url: Optional[str] = None | |
api_version: Optional[str] = None # for azure | |
deployment_name: Optional[str] = None # for azure | |
resource_name: Optional[str] = None # for azure | |
temperature: float = TEMPERATURE | |
max_tokens: Optional[int] = None | |
top_p: Optional[float] = 1.0 | |
class ApiChatParams(ApiModelParams): | |
''' | |
chat请求参数 | |
''' | |
messages: List[Dict[str, str]] | |
system_message: Optional[str] = None # for minimax | |
role_meta: Dict = {} # for minimax | |
class ApiCompletionParams(ApiModelParams): | |
prompt: str | |
class ApiEmbeddingsParams(ApiConfigParams): | |
texts: List[str] | |
embed_model: Optional[str] = None | |
to_query: bool = False # for minimax | |
class ApiModelWorker(BaseModelWorker): | |
DEFAULT_EMBED_MODEL: str = None # None means not support embedding | |
def __init__( | |
self, | |
model_names: List[str], | |
controller_addr: str = None, | |
worker_addr: str = None, | |
context_len: int = 2048, | |
no_register: bool = False, | |
**kwargs, | |
): | |
kwargs.setdefault("worker_id", uuid.uuid4().hex[:8]) | |
kwargs.setdefault("model_path", "") | |
kwargs.setdefault("limit_worker_concurrency", 5) | |
super().__init__(model_names=model_names, | |
controller_addr=controller_addr, | |
worker_addr=worker_addr, | |
**kwargs) | |
import fastchat.serve.base_model_worker | |
import sys | |
self.logger = fastchat.serve.base_model_worker.logger | |
# 恢复被fastchat覆盖的标准输出 | |
sys.stdout = sys.__stdout__ | |
sys.stderr = sys.__stderr__ | |
new_loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(new_loop) | |
self.context_len = context_len | |
self.semaphore = asyncio.Semaphore(self.limit_worker_concurrency) | |
self.version = None | |
if not no_register and self.controller_addr: | |
self.init_heart_beat() | |
def count_token(self, params): | |
prompt = params["prompt"] | |
return {"count": len(str(prompt)), "error_code": 0} | |
def generate_stream_gate(self, params: Dict): | |
self.call_ct += 1 | |
try: | |
prompt = params["prompt"] | |
if self._is_chat(prompt): | |
messages = self.prompt_to_messages(prompt) | |
messages = self.validate_messages(messages) | |
else: # 使用chat模仿续写功能,不支持历史消息 | |
messages = [{"role": self.user_role, "content": f"please continue writing from here: {prompt}"}] | |
p = ApiChatParams( | |
messages=messages, | |
temperature=params.get("temperature"), | |
top_p=params.get("top_p"), | |
max_tokens=params.get("max_new_tokens"), | |
version=self.version, | |
) | |
for resp in self.do_chat(p): | |
yield self._jsonify(resp) | |
except Exception as e: | |
yield self._jsonify({"error_code": 500, "text": f"{self.model_names[0]}请求API时发生错误:{e}"}) | |
def generate_gate(self, params): | |
try: | |
for x in self.generate_stream_gate(params): | |
... | |
return json.loads(x[:-1].decode()) | |
except Exception as e: | |
return {"error_code": 500, "text": str(e)} | |
# 需要用户自定义的方法 | |
def do_chat(self, params: ApiChatParams) -> Dict: | |
''' | |
执行Chat的方法,默认使用模块里面的chat函数。 | |
要求返回形式:{"error_code": int, "text": str} | |
''' | |
return {"error_code": 500, "text": f"{self.model_names[0]}未实现chat功能"} | |
# def do_completion(self, p: ApiCompletionParams) -> Dict: | |
# ''' | |
# 执行Completion的方法,默认使用模块里面的completion函数。 | |
# 要求返回形式:{"error_code": int, "text": str} | |
# ''' | |
# return {"error_code": 500, "text": f"{self.model_names[0]}未实现completion功能"} | |
def do_embeddings(self, params: ApiEmbeddingsParams) -> Dict: | |
''' | |
执行Embeddings的方法,默认使用模块里面的embed_documents函数。 | |
要求返回形式:{"code": int, "data": List[List[float]], "msg": str} | |
''' | |
return {"code": 500, "msg": f"{self.model_names[0]}未实现embeddings功能"} | |
def get_embeddings(self, params): | |
# fastchat对LLM做Embeddings限制很大,似乎只能使用openai的。 | |
# 在前端通过OpenAIEmbeddings发起的请求直接出错,无法请求过来。 | |
print("get_embedding") | |
print(params) | |
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation: | |
raise NotImplementedError | |
def validate_messages(self, messages: List[Dict]) -> List[Dict]: | |
''' | |
有些API对mesages有特殊格式,可以重写该函数替换默认的messages。 | |
之所以跟prompt_to_messages分开,是因为他们应用场景不同、参数不同 | |
''' | |
return messages | |
# help methods | |
def user_role(self): | |
return self.conv.roles[0] | |
def ai_role(self): | |
return self.conv.roles[1] | |
def _jsonify(self, data: Dict) -> str: | |
''' | |
将chat函数返回的结果按照fastchat openai-api-server的格式返回 | |
''' | |
return json.dumps(data, ensure_ascii=False).encode() + b"\0" | |
def _is_chat(self, prompt: str) -> bool: | |
''' | |
检查prompt是否由chat messages拼接而来 | |
TODO: 存在误判的可能,也许从fastchat直接传入原始messages是更好的做法 | |
''' | |
key = f"{self.conv.sep}{self.user_role}:" | |
return key in prompt | |
def prompt_to_messages(self, prompt: str) -> List[Dict]: | |
''' | |
将prompt字符串拆分成messages. | |
''' | |
result = [] | |
user_role = self.user_role | |
ai_role = self.ai_role | |
user_start = user_role + ":" | |
ai_start = ai_role + ":" | |
for msg in prompt.split(self.conv.sep)[1:-1]: | |
if msg.startswith(user_start): | |
if content := msg[len(user_start):].strip(): | |
result.append({"role": user_role, "content": content}) | |
elif msg.startswith(ai_start): | |
if content := msg[len(ai_start):].strip(): | |
result.append({"role": ai_role, "content": content}) | |
else: | |
raise RuntimeError(f"unknown role in msg: {msg}") | |
return result | |
def can_embedding(cls): | |
return cls.DEFAULT_EMBED_MODEL is not None | |