Spaces:
Running
Running
import json | |
import sys | |
from fastchat.conversation import Conversation | |
from configs import TEMPERATURE | |
from http import HTTPStatus | |
from typing import List, Literal, Dict | |
from fastchat import conversation as conv | |
from server.model_workers.base import * | |
from server.model_workers.base import ApiEmbeddingsParams | |
from configs import logger, log_verbose | |
class QwenWorker(ApiModelWorker): | |
DEFAULT_EMBED_MODEL = "text-embedding-v1" | |
def __init__( | |
self, | |
*, | |
version: Literal["qwen-turbo", "qwen-plus"] = "qwen-turbo", | |
model_names: List[str] = ["qwen-api"], | |
controller_addr: str = None, | |
worker_addr: str = None, | |
**kwargs, | |
): | |
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr) | |
kwargs.setdefault("context_len", 16384) | |
super().__init__(**kwargs) | |
self.version = version | |
def do_chat(self, params: ApiChatParams) -> Dict: | |
import dashscope | |
params.load_config(self.model_names[0]) | |
if log_verbose: | |
logger.info(f'{self.__class__.__name__}:params: {params}') | |
gen = dashscope.Generation() | |
responses = gen.call( | |
model=params.version, | |
temperature=params.temperature, | |
api_key=params.api_key, | |
messages=params.messages, | |
result_format='message', # set the result is message format. | |
stream=True, | |
) | |
for resp in responses: | |
if resp["status_code"] == 200: | |
if choices := resp["output"]["choices"]: | |
yield { | |
"error_code": 0, | |
"text": choices[0]["message"]["content"], | |
} | |
else: | |
data = { | |
"error_code": resp["status_code"], | |
"text": resp["message"], | |
"error": { | |
"message": resp["message"], | |
"type": "invalid_request_error", | |
"param": None, | |
"code": None, | |
} | |
} | |
self.logger.error(f"请求千问 API 时发生错误:{data}") | |
yield data | |
def do_embeddings(self, params: ApiEmbeddingsParams) -> Dict: | |
import dashscope | |
params.load_config(self.model_names[0]) | |
if log_verbose: | |
logger.info(f'{self.__class__.__name__}:params: {params}') | |
result = [] | |
i = 0 | |
while i < len(params.texts): | |
texts = params.texts[i:i+25] | |
resp = dashscope.TextEmbedding.call( | |
model=params.embed_model or self.DEFAULT_EMBED_MODEL, | |
input=texts, # 最大25行 | |
api_key=params.api_key, | |
) | |
if resp["status_code"] != 200: | |
data = { | |
"code": resp["status_code"], | |
"msg": resp.message, | |
"error": { | |
"message": resp["message"], | |
"type": "invalid_request_error", | |
"param": None, | |
"code": None, | |
} | |
} | |
self.logger.error(f"请求千问 API 时发生错误:{data}") | |
return data | |
else: | |
embeddings = [x["embedding"] for x in resp["output"]["embeddings"]] | |
result += embeddings | |
i += 25 | |
return {"code": 200, "data": result} | |
def get_embeddings(self, params): | |
print("embedding") | |
print(params) | |
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation: | |
return conv.Conversation( | |
name=self.model_names[0], | |
system_message="你是一个聪明、对人类有帮助的人工智能,你可以对人类提出的问题给出有用、详细、礼貌的回答。", | |
messages=[], | |
roles=["user", "assistant", "system"], | |
sep="\n### ", | |
stop_str="###", | |
) | |
if __name__ == "__main__": | |
import uvicorn | |
from server.utils import MakeFastAPIOffline | |
from fastchat.serve.model_worker import app | |
worker = QwenWorker( | |
controller_addr="http://127.0.0.1:20001", | |
worker_addr="http://127.0.0.1:20007", | |
) | |
sys.modules["fastchat.serve.model_worker"].worker = worker | |
MakeFastAPIOffline(app) | |
uvicorn.run(app, port=20007) | |