Zulelee's picture
Upload 254 files
5e9cd1d verified
from fastchat.conversation import Conversation
from server.model_workers.base import *
from fastchat import conversation as conv
import sys
import json
from server.model_workers import SparkApi
import websockets
from server.utils import iter_over_async, asyncio
from typing import List, Dict
async def request(appid, api_key, api_secret, Spark_url, domain, question, temperature, max_token):
wsParam = SparkApi.Ws_Param(appid, api_key, api_secret, Spark_url)
wsUrl = wsParam.create_url()
data = SparkApi.gen_params(appid, domain, question, temperature, max_token)
print(data)
async with websockets.connect(wsUrl) as ws:
await ws.send(json.dumps(data, ensure_ascii=False))
finish = False
while not finish:
chunk = await ws.recv()
response = json.loads(chunk)
if response.get("header", {}).get("status") == 2:
finish = True
if text := response.get("payload", {}).get("choices", {}).get("text"):
yield text[0]["content"]
class XingHuoWorker(ApiModelWorker):
def __init__(
self,
*,
model_names: List[str] = ["xinghuo-api"],
controller_addr: str = None,
worker_addr: str = None,
version: str = None,
**kwargs,
):
kwargs.update(model_names=model_names, controller_addr=controller_addr, worker_addr=worker_addr)
kwargs.setdefault("context_len", 8000)
super().__init__(**kwargs)
self.version = version
def do_chat(self, params: ApiChatParams) -> Dict:
params.load_config(self.model_names[0])
version_mapping = {
"v1.5": {"domain": "general", "url": "ws://spark-api.xf-yun.com/v1.1/chat","max_tokens": 4000},
"v2.0": {"domain": "generalv2", "url": "ws://spark-api.xf-yun.com/v2.1/chat","max_tokens": 8000},
"v3.0": {"domain": "generalv3", "url": "ws://spark-api.xf-yun.com/v3.1/chat","max_tokens": 8000},
}
def get_version_details(version_key):
return version_mapping.get(version_key, {"domain": None, "url": None})
details = get_version_details(params.version)
domain = details["domain"]
Spark_url = details["url"]
text = ""
try:
loop = asyncio.get_event_loop()
except:
loop = asyncio.new_event_loop()
params.max_tokens = min(details["max_tokens"], params.max_tokens or 0)
for chunk in iter_over_async(
request(params.APPID, params.api_key, params.APISecret, Spark_url, domain, params.messages,
params.temperature, params.max_tokens),
loop=loop,
):
if chunk:
text += chunk
yield {"error_code": 0, "text": text}
def get_embeddings(self, params):
print("embedding")
print(params)
def make_conv_template(self, conv_template: str = None, model_path: str = None) -> Conversation:
return conv.Conversation(
name=self.model_names[0],
system_message="你是一个聪明的助手,请根据用户的提示来完成任务",
messages=[],
roles=["user", "assistant"],
sep="\n### ",
stop_str="###",
)
if __name__ == "__main__":
import uvicorn
from server.utils import MakeFastAPIOffline
from fastchat.serve.model_worker import app
worker = XingHuoWorker(
controller_addr="http://127.0.0.1:20001",
worker_addr="http://127.0.0.1:21003",
)
sys.modules["fastchat.serve.model_worker"].worker = worker
MakeFastAPIOffline(app)
uvicorn.run(app, port=21003)