import nltk import sys import os sys.path.append(os.path.dirname(os.path.dirname(__file__))) from configs import VERSION from configs.model_config import NLTK_DATA_PATH from configs.server_config import OPEN_CROSS_DOMAIN import argparse import uvicorn from fastapi import Body from fastapi.middleware.cors import CORSMiddleware from starlette.responses import RedirectResponse from server.chat.chat import chat from server.chat.search_engine_chat import search_engine_chat from server.chat.completion import completion from server.chat.feedback import chat_feedback from server.embeddings_api import embed_texts_endpoint from server.llm_api import (list_running_models, list_config_models, change_llm_model, stop_llm_model, get_model_config, list_search_engines) from server.utils import (BaseResponse, ListResponse, FastAPI, MakeFastAPIOffline, get_server_configs, get_prompt_template) from typing import List, Literal nltk.data.path = [NLTK_DATA_PATH] + nltk.data.path async def document(): return RedirectResponse(url="/docs") def create_app(run_mode: str = None): app = FastAPI( title="Langchain-Chatchat API Server", version=VERSION ) MakeFastAPIOffline(app) # Add CORS middleware to allow all origins # 在config.py中设置OPEN_DOMAIN=True,允许跨域 # set OPEN_DOMAIN=True in config.py to allow cross-domain if OPEN_CROSS_DOMAIN: app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) mount_app_routes(app, run_mode=run_mode) return app def mount_app_routes(app: FastAPI, run_mode: str = None): app.get("/", response_model=BaseResponse, summary="swagger 文档")(document) # Tag: Chat app.post("/chat/chat", tags=["Chat"], summary="与llm模型对话(通过LLMChain)", )(chat) app.post("/chat/search_engine_chat", tags=["Chat"], summary="与搜索引擎对话", )(search_engine_chat) app.post("/chat/feedback", tags=["Chat"], summary="返回llm模型对话评分", )(chat_feedback) # 知识库相关接口 mount_knowledge_routes(app) # 摘要相关接口 mount_filename_summary_routes(app) # LLM模型相关接口 app.post("/llm_model/list_running_models", tags=["LLM Model Management"], summary="列出当前已加载的模型", )(list_running_models) app.post("/llm_model/list_config_models", tags=["LLM Model Management"], summary="列出configs已配置的模型", )(list_config_models) app.post("/llm_model/get_model_config", tags=["LLM Model Management"], summary="获取模型配置(合并后)", )(get_model_config) app.post("/llm_model/stop", tags=["LLM Model Management"], summary="停止指定的LLM模型(Model Worker)", )(stop_llm_model) app.post("/llm_model/change", tags=["LLM Model Management"], summary="切换指定的LLM模型(Model Worker)", )(change_llm_model) # 服务器相关接口 app.post("/server/configs", tags=["Server State"], summary="获取服务器原始配置信息", )(get_server_configs) app.post("/server/list_search_engines", tags=["Server State"], summary="获取服务器支持的搜索引擎", )(list_search_engines) @app.post("/server/get_prompt_template", tags=["Server State"], summary="获取服务区配置的 prompt 模板") def get_server_prompt_template( type: Literal["llm_chat", "knowledge_base_chat", "search_engine_chat", "agent_chat"]=Body("llm_chat", description="模板类型,可选值:llm_chat,knowledge_base_chat,search_engine_chat,agent_chat"), name: str = Body("default", description="模板名称"), ) -> str: return get_prompt_template(type=type, name=name) # 其它接口 app.post("/other/completion", tags=["Other"], summary="要求llm模型补全(通过LLMChain)", )(completion) app.post("/other/embed_texts", tags=["Other"], summary="将文本向量化,支持本地模型和在线模型", )(embed_texts_endpoint) def mount_knowledge_routes(app: FastAPI): from server.chat.knowledge_base_chat import knowledge_base_chat from server.chat.file_chat import upload_temp_docs, file_chat from server.chat.agent_chat import agent_chat from server.knowledge_base.kb_api import list_kbs, create_kb, delete_kb from server.knowledge_base.kb_doc_api import (list_files, upload_docs, delete_docs, update_docs, download_doc, recreate_vector_store, search_docs, DocumentWithVSId, update_info, update_docs_by_id,) app.post("/chat/knowledge_base_chat", tags=["Chat"], summary="与知识库对话")(knowledge_base_chat) app.post("/chat/file_chat", tags=["Knowledge Base Management"], summary="文件对话" )(file_chat) app.post("/chat/agent_chat", tags=["Chat"], summary="与agent对话")(agent_chat) # Tag: Knowledge Base Management app.get("/knowledge_base/list_knowledge_bases", tags=["Knowledge Base Management"], response_model=ListResponse, summary="获取知识库列表")(list_kbs) app.post("/knowledge_base/create_knowledge_base", tags=["Knowledge Base Management"], response_model=BaseResponse, summary="创建知识库" )(create_kb) app.post("/knowledge_base/delete_knowledge_base", tags=["Knowledge Base Management"], response_model=BaseResponse, summary="删除知识库" )(delete_kb) app.get("/knowledge_base/list_files", tags=["Knowledge Base Management"], response_model=ListResponse, summary="获取知识库内的文件列表" )(list_files) app.post("/knowledge_base/search_docs", tags=["Knowledge Base Management"], response_model=List[DocumentWithVSId], summary="搜索知识库" )(search_docs) app.post("/knowledge_base/update_docs_by_id", tags=["Knowledge Base Management"], response_model=BaseResponse, summary="直接更新知识库文档" )(update_docs_by_id) app.post("/knowledge_base/upload_docs", tags=["Knowledge Base Management"], response_model=BaseResponse, summary="上传文件到知识库,并/或进行向量化" )(upload_docs) app.post("/knowledge_base/delete_docs", tags=["Knowledge Base Management"], response_model=BaseResponse, summary="删除知识库内指定文件" )(delete_docs) app.post("/knowledge_base/update_info", tags=["Knowledge Base Management"], response_model=BaseResponse, summary="更新知识库介绍" )(update_info) app.post("/knowledge_base/update_docs", tags=["Knowledge Base Management"], response_model=BaseResponse, summary="更新现有文件到知识库" )(update_docs) app.get("/knowledge_base/download_doc", tags=["Knowledge Base Management"], summary="下载对应的知识文件")(download_doc) app.post("/knowledge_base/recreate_vector_store", tags=["Knowledge Base Management"], summary="根据content中文档重建向量库,流式输出处理进度。" )(recreate_vector_store) app.post("/knowledge_base/upload_temp_docs", tags=["Knowledge Base Management"], summary="上传文件到临时目录,用于文件对话。" )(upload_temp_docs) def mount_filename_summary_routes(app: FastAPI): from server.knowledge_base.kb_summary_api import (summary_file_to_vector_store, recreate_summary_vector_store, summary_doc_ids_to_vector_store) app.post("/knowledge_base/kb_summary_api/summary_file_to_vector_store", tags=["Knowledge kb_summary_api Management"], summary="单个知识库根据文件名称摘要" )(summary_file_to_vector_store) app.post("/knowledge_base/kb_summary_api/summary_doc_ids_to_vector_store", tags=["Knowledge kb_summary_api Management"], summary="单个知识库根据doc_ids摘要", response_model=BaseResponse, )(summary_doc_ids_to_vector_store) app.post("/knowledge_base/kb_summary_api/recreate_summary_vector_store", tags=["Knowledge kb_summary_api Management"], summary="重建单个知识库文件摘要" )(recreate_summary_vector_store) def run_api(host, port, **kwargs): if kwargs.get("ssl_keyfile") and kwargs.get("ssl_certfile"): uvicorn.run(app, host=host, port=port, ssl_keyfile=kwargs.get("ssl_keyfile"), ssl_certfile=kwargs.get("ssl_certfile"), ) else: uvicorn.run(app, host=host, port=port) if __name__ == "__main__": parser = argparse.ArgumentParser(prog='langchain-ChatGLM', description='About langchain-ChatGLM, local knowledge based ChatGLM with langchain' ' | 基于本地知识库的 ChatGLM 问答') parser.add_argument("--host", type=str, default="0.0.0.0") parser.add_argument("--port", type=int, default=7861) parser.add_argument("--ssl_keyfile", type=str) parser.add_argument("--ssl_certfile", type=str) # 初始化消息 args = parser.parse_args() args_dict = vars(args) app = create_app() run_api(host=args.host, port=args.port, ssl_keyfile=args.ssl_keyfile, ssl_certfile=args.ssl_certfile, )