whisper-webui / src /vadParallel.py
aadnk's picture
Support progress for multiple devices
4a9d465
raw
history blame
12.3 kB
import multiprocessing
from queue import Empty
import threading
import time
from src.hooks.whisperProgressHook import ProgressListener
from src.vad import AbstractTranscription, TranscriptionConfig, get_audio_duration
from src.whisperContainer import WhisperCallback
from multiprocessing import Pool, Queue
from typing import Any, Dict, List, Union
import os
class _ProgressListenerToQueue(ProgressListener):
def __init__(self, progress_queue: Queue):
self.progress_queue = progress_queue
self.progress_total = 0
self.prev_progress = 0
def on_progress(self, current: Union[int, float], total: Union[int, float]):
delta = current - self.prev_progress
self.prev_progress = current
self.progress_total = total
self.progress_queue.put(delta)
def on_finished(self):
if self.progress_total > self.prev_progress:
delta = self.progress_total - self.prev_progress
self.progress_queue.put(delta)
self.prev_progress = self.progress_total
class ParallelContext:
def __init__(self, num_processes: int = None, auto_cleanup_timeout_seconds: float = None):
self.num_processes = num_processes
self.auto_cleanup_timeout_seconds = auto_cleanup_timeout_seconds
self.lock = threading.Lock()
self.ref_count = 0
self.pool = None
self.cleanup_timer = None
def get_pool(self):
# Initialize pool lazily
if (self.pool is None):
context = multiprocessing.get_context('spawn')
self.pool = context.Pool(self.num_processes)
self.ref_count = self.ref_count + 1
if (self.auto_cleanup_timeout_seconds is not None):
self._stop_auto_cleanup()
return self.pool
def return_pool(self, pool):
if (self.pool == pool and self.ref_count > 0):
self.ref_count = self.ref_count - 1
if (self.ref_count == 0):
if (self.auto_cleanup_timeout_seconds is not None):
self._start_auto_cleanup()
def _start_auto_cleanup(self):
if (self.cleanup_timer is not None):
self.cleanup_timer.cancel()
self.cleanup_timer = threading.Timer(self.auto_cleanup_timeout_seconds, self._execute_cleanup)
self.cleanup_timer.start()
print("Started auto cleanup of pool in " + str(self.auto_cleanup_timeout_seconds) + " seconds")
def _stop_auto_cleanup(self):
if (self.cleanup_timer is not None):
self.cleanup_timer.cancel()
self.cleanup_timer = None
print("Stopped auto cleanup of pool")
def _execute_cleanup(self):
print("Executing cleanup of pool")
if (self.ref_count == 0):
self.close()
def close(self):
self._stop_auto_cleanup()
if (self.pool is not None):
print("Closing pool of " + str(self.num_processes) + " processes")
self.pool.close()
self.pool.join()
self.pool = None
class ParallelTranscriptionConfig(TranscriptionConfig):
def __init__(self, device_id: str, override_timestamps, initial_segment_index, copy: TranscriptionConfig = None):
super().__init__(copy.non_speech_strategy, copy.segment_padding_left, copy.segment_padding_right, copy.max_silent_period, copy.max_merge_size, copy.max_prompt_window, initial_segment_index)
self.device_id = device_id
self.override_timestamps = override_timestamps
class ParallelTranscription(AbstractTranscription):
# Silero VAD typically takes about 3 seconds per minute, so there's no need to split the chunks
# into smaller segments than 2 minute (min 6 seconds per CPU core)
MIN_CPU_CHUNK_SIZE_SECONDS = 2 * 60
def __init__(self, sampling_rate: int = 16000):
super().__init__(sampling_rate=sampling_rate)
def transcribe_parallel(self, transcription: AbstractTranscription, audio: str, whisperCallable: WhisperCallback, config: TranscriptionConfig,
cpu_device_count: int, gpu_devices: List[str], cpu_parallel_context: ParallelContext = None, gpu_parallel_context: ParallelContext = None,
progress_listener: ProgressListener = None):
total_duration = get_audio_duration(audio)
# First, get the timestamps for the original audio
if (cpu_device_count > 1 and not transcription.is_transcribe_timestamps_fast()):
merged = self._get_merged_timestamps_parallel(transcription, audio, config, total_duration, cpu_device_count, cpu_parallel_context)
else:
timestamp_segments = transcription.get_transcribe_timestamps(audio, config, 0, total_duration)
merged = transcription.get_merged_timestamps(timestamp_segments, config, total_duration)
# We must make sure the whisper model is downloaded
if (len(gpu_devices) > 1):
whisperCallable.model_container.ensure_downloaded()
# Split into a list for each device
# TODO: Split by time instead of by number of chunks
merged_split = list(self._split(merged, len(gpu_devices)))
# Parameters that will be passed to the transcribe function
parameters = []
segment_index = config.initial_segment_index
processing_manager = multiprocessing.Manager()
progress_queue = processing_manager.Queue()
for i in range(len(gpu_devices)):
# Note that device_segment_list can be empty. But we will still create a process for it,
# as otherwise we run the risk of assigning the same device to multiple processes.
device_segment_list = list(merged_split[i]) if i < len(merged_split) else []
device_id = gpu_devices[i]
print("Device " + str(device_id) + " (index " + str(i) + ") has " + str(len(device_segment_list)) + " segments")
# Create a new config with the given device ID
device_config = ParallelTranscriptionConfig(device_id, device_segment_list, segment_index, config)
segment_index += len(device_segment_list)
progress_listener_to_queue = _ProgressListenerToQueue(progress_queue)
parameters.append([audio, whisperCallable, device_config, progress_listener_to_queue]);
merged = {
'text': '',
'segments': [],
'language': None
}
created_context = False
perf_start_gpu = time.perf_counter()
# Spawn a separate process for each device
try:
if (gpu_parallel_context is None):
gpu_parallel_context = ParallelContext(len(gpu_devices))
created_context = True
# Get a pool of processes
pool = gpu_parallel_context.get_pool()
# Run the transcription in parallel
results_async = pool.starmap_async(self.transcribe, parameters)
total_progress = 0
while not results_async.ready():
try:
delta = progress_queue.get(timeout=5) # Set a timeout of 5 seconds
except Empty:
continue
total_progress += delta
if progress_listener is not None:
progress_listener.on_progress(total_progress, total_duration)
results = results_async.get()
# Call the finished callback
if progress_listener is not None:
progress_listener.on_finished()
for result in results:
# Merge the results
if (result['text'] is not None):
merged['text'] += result['text']
if (result['segments'] is not None):
merged['segments'].extend(result['segments'])
if (result['language'] is not None):
merged['language'] = result['language']
finally:
# Return the pool to the context
if (gpu_parallel_context is not None):
gpu_parallel_context.return_pool(pool)
# Always close the context if we created it
if (created_context):
gpu_parallel_context.close()
perf_end_gpu = time.perf_counter()
print("Parallel transcription took " + str(perf_end_gpu - perf_start_gpu) + " seconds")
return merged
def _get_merged_timestamps_parallel(self, transcription: AbstractTranscription, audio: str, config: TranscriptionConfig, total_duration: float,
cpu_device_count: int, cpu_parallel_context: ParallelContext = None):
parameters = []
chunk_size = max(total_duration / cpu_device_count, self.MIN_CPU_CHUNK_SIZE_SECONDS)
chunk_start = 0
cpu_device_id = 0
perf_start_time = time.perf_counter()
# Create chunks that will be processed on the CPU
while (chunk_start < total_duration):
chunk_end = min(chunk_start + chunk_size, total_duration)
if (chunk_end - chunk_start < 1):
# No need to process chunks that are less than 1 second
break
print("Parallel VAD: Executing chunk from " + str(chunk_start) + " to " +
str(chunk_end) + " on CPU device " + str(cpu_device_id))
parameters.append([audio, config, chunk_start, chunk_end]);
cpu_device_id += 1
chunk_start = chunk_end
created_context = False
# Spawn a separate process for each device
try:
if (cpu_parallel_context is None):
cpu_parallel_context = ParallelContext(cpu_device_count)
created_context = True
# Get a pool of processes
pool = cpu_parallel_context.get_pool()
# Run the transcription in parallel. Note that transcription must be picklable.
results = pool.starmap(transcription.get_transcribe_timestamps, parameters)
timestamps = []
# Flatten the results
for result in results:
timestamps.extend(result)
merged = transcription.get_merged_timestamps(timestamps, config, total_duration)
perf_end_time = time.perf_counter()
print("Parallel VAD processing took {} seconds".format(perf_end_time - perf_start_time))
return merged
finally:
# Return the pool to the context
if (cpu_parallel_context is not None):
cpu_parallel_context.return_pool(pool)
# Always close the context if we created it
if (created_context):
cpu_parallel_context.close()
def get_transcribe_timestamps(self, audio: str, config: ParallelTranscriptionConfig, start_time: float, duration: float):
return []
def get_merged_timestamps(self, timestamps: List[Dict[str, Any]], config: ParallelTranscriptionConfig, total_duration: float):
# Override timestamps that will be processed
if (config.override_timestamps is not None):
print("(get_merged_timestamps) Using override timestamps of size " + str(len(config.override_timestamps)))
return config.override_timestamps
return super().get_merged_timestamps(timestamps, config, total_duration)
def transcribe(self, audio: str, whisperCallable: WhisperCallback, config: ParallelTranscriptionConfig,
progressListener: ProgressListener = None):
# Override device ID the first time
if (os.environ.get("INITIALIZED", None) is None):
os.environ["INITIALIZED"] = "1"
# Note that this may be None if the user didn't specify a device. In that case, Whisper will
# just use the default GPU device.
if (config.device_id is not None):
print("Using device " + config.device_id)
os.environ["CUDA_VISIBLE_DEVICES"] = config.device_id
return super().transcribe(audio, whisperCallable, config, progressListener)
def _split(self, a, n):
"""Split a list into n approximately equal parts."""
k, m = divmod(len(a), n)
return (a[i*k+min(i, m):(i+1)*k+min(i+1, m)] for i in range(n))