Spaces:
Sleeping
Sleeping
import torch | |
import torchvision | |
from torch import nn | |
from torchvision.models._api import WeightsEnum | |
from torch.hub import load_state_dict_from_url | |
def create_effnetb2_model(num_classes:int=3, seed:int=42): | |
# https://pytorch.org/vision/main/models/generated/torchvision.models.efficientnet_b2.html#torchvision.models.efficientnet_b2 | |
def get_state_dict(self, *args, **kwargs): | |
kwargs.pop("check_hash") | |
return load_state_dict_from_url(self.url, *args, **kwargs) | |
WeightsEnum.get_state_dict = get_state_dict | |
# 1. Setup pretrained EffNetB2 weights | |
effnetb2_weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT # DEFAULT = BEST | |
# 2. Get EffNetB2 transforms | |
effnetb2_transforms = effnetb2_weights.transforms() | |
# 3. Setup pretrained model instance | |
effnetb2_model = torchvision.models.efficientnet_b2(weights=effnetb2_weights) | |
# 4. Freeze the base layers in the model | |
for param in effnetb2_model.features.parameters(): | |
param.requires_grad = False | |
# 5. Modify the classifier | |
torch.manual_seed(seed) | |
effnetb2_model.classifier = nn.Sequential( | |
nn.Dropout(p=0.3, inplace=True), | |
nn.Linear(in_features=1408,out_features=num_classes,bias=True) | |
) | |
return effnetb2_model, effnetb2_transforms | |