Spaces:
Runtime error
Runtime error
aakashch0179
commited on
Commit
•
61eeb7c
1
Parent(s):
c6b92f1
Update app.py
Browse files
app.py
CHANGED
@@ -3,45 +3,30 @@ from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
|
|
3 |
from diffusers.utils import export_to_video
|
4 |
import streamlit as st
|
5 |
import numpy as np
|
|
|
6 |
# Title and User Input
|
7 |
st.title("Text-to-Video with Streamlit")
|
8 |
prompt = st.text_input("Enter your text prompt:", "Spiderman is surfing")
|
9 |
|
10 |
# Button to trigger generation
|
11 |
-
|
12 |
-
|
13 |
-
# Ensure you have 'accelerate' version 0.17.0 or higher
|
14 |
import accelerate
|
15 |
if accelerate.__version__ < "0.17.0":
|
16 |
st.warning("Please upgrade 'accelerate' to version 0.17.0 or higher for CPU offloading.")
|
17 |
else:
|
18 |
with st.spinner("Generating video..."):
|
19 |
-
|
20 |
-
torch_dtype=torch.float16,
|
21 |
-
variant="fp16",
|
22 |
-
device="cpu") # Force CPU usage
|
23 |
-
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
|
24 |
-
pipe.enable_model_cpu_offload() # Assuming 'accelerate' is updated
|
25 |
|
26 |
-
|
27 |
-
|
28 |
video_frames = pipe(prompt, num_inference_steps=25).frames
|
29 |
|
30 |
-
#
|
31 |
-
# video_frames = [np.transpose(frame, (1, 2, 0)) for frame in video_frames] # Swap time and channels axes
|
32 |
-
|
33 |
-
# # Check and adjust axes if needed
|
34 |
-
# for i, frame in enumerate(video_frames):
|
35 |
-
# if len(frame.shape) == 3: # Assuming (height, width, channels) format
|
36 |
-
# video_frames[i] = np.transpose(frame, (1, 0, 2)) # Swap height and width
|
37 |
-
|
38 |
|
39 |
-
#
|
40 |
-
dummy_frames = [np.ones((256, 256, 3), dtype=np.uint8) for _ in range(20)]
|
41 |
|
42 |
-
# Replace with your actual export logic
|
43 |
-
video_path = export_to_video(dummy_frames)
|
44 |
|
45 |
-
|
46 |
-
st.video(video_path)
|
47 |
-
|
|
|
3 |
from diffusers.utils import export_to_video
|
4 |
import streamlit as st
|
5 |
import numpy as np
|
6 |
+
|
7 |
# Title and User Input
|
8 |
st.title("Text-to-Video with Streamlit")
|
9 |
prompt = st.text_input("Enter your text prompt:", "Spiderman is surfing")
|
10 |
|
11 |
# Button to trigger generation
|
12 |
+
if st.button("Generate Video"):
|
13 |
+
# Ensure you have 'accelerate' version 0.17.0 or higher
|
|
|
14 |
import accelerate
|
15 |
if accelerate.__version__ < "0.17.0":
|
16 |
st.warning("Please upgrade 'accelerate' to version 0.17.0 or higher for CPU offloading.")
|
17 |
else:
|
18 |
with st.spinner("Generating video..."):
|
19 |
+
# ... (Your model loading code)
|
|
|
|
|
|
|
|
|
|
|
20 |
|
|
|
|
|
21 |
video_frames = pipe(prompt, num_inference_steps=25).frames
|
22 |
|
23 |
+
# ... (Your potential reshaping code)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
# Create dummy frames for testing
|
26 |
+
dummy_frames = [np.ones((256, 256, 3), dtype=np.uint8) for _ in range(20)]
|
27 |
|
28 |
+
# Replace with your actual export logic
|
29 |
+
video_path = export_to_video(dummy_frames)
|
30 |
|
31 |
+
# Display the video in the Streamlit app
|
32 |
+
st.video(video_path)
|
|