Spaces:
Running
Running
import streamlit as st | |
import openai | |
import requests | |
st.set_page_config(page_title="CodeLlama Playground - via DeepInfra", page_icon='π¦') | |
MODEL_IMAGES = { | |
"meta-llama/Meta-Llama-3-8B-Instruct": "https://em-content.zobj.net/source/twitter/376/llama_1f999.png", # Add the emoji for the Meta-Llama model | |
# "codellama/CodeLlama-34b-Instruct-hf": "https://em-content.zobj.net/source/twitter/376/llama_1f999.png", | |
# "mistralai/Mistral-7B-Instruct-v0.1": "https://em-content.zobj.net/source/twitter/376/tornado_1f32a-fe0f.png", | |
"mistralai/Mixtral-8x7B-Instruct-v0.1": "https://em-content.zobj.net/source/twitter/376/tornado_1f32a-fe0f.png", | |
} | |
# Create a mapping from formatted model names to their original identifiers | |
def format_model_name(model_key): | |
parts = model_key.split('/') | |
model_name = parts[-1] # Get the last part after '/' | |
name_parts = model_name.split('-') | |
# Custom formatting for specific models | |
if "Meta-Llama-3-8B-Instruct" in model_key: | |
return "Llama 3 8B-Instruct" | |
else: | |
# General formatting for other models | |
formatted_name = ' '.join(name_parts[:-2]).title() # Join them into a single string with title case | |
return formatted_name | |
formatted_names_to_identifiers = { | |
format_model_name(key): key for key in MODEL_IMAGES.keys() | |
} | |
# Debug to ensure names are formatted correctly | |
#st.write("Formatted Model Names to Identifiers:", formatted_names_to_identifiers) | |
selected_formatted_name = st.sidebar.radio( | |
"Select LLM Model", | |
list(formatted_names_to_identifiers.keys()) | |
) | |
selected_model = formatted_names_to_identifiers[selected_formatted_name] | |
if MODEL_IMAGES[selected_model].startswith("http"): | |
st.image(MODEL_IMAGES[selected_model], width=90) | |
else: | |
st.write(f"Model Icon: {MODEL_IMAGES[selected_model]}", unsafe_allow_html=True) | |
# Display the selected model using the formatted name | |
model_display_name = selected_formatted_name # Already formatted | |
# st.write(f"Model being used: `{model_display_name}`") | |
st.sidebar.markdown('---') | |
API_KEY = st.secrets["api_key"] | |
openai.api_base = "https://api.deepinfra.com/v1/openai" | |
MODEL_CODELLAMA = selected_model | |
def get_response(api_key, model, user_input, max_tokens, top_p): | |
openai.api_key = api_key | |
try: | |
if "meta-llama/Meta-Llama-3-8B-Instruct" in model: | |
# Assume different API setup for Meta-Llama | |
chat_completion = requests.post( | |
"https://api.deepinfra.com/v1/openai/chat/completions", | |
headers={"Authorization": f"Bearer {api_key}"}, | |
json={ | |
"model": model, | |
"messages": [{"role": "user", "content": user_input}], | |
"max_tokens": max_tokens, | |
"top_p": top_p | |
} | |
).json() | |
return chat_completion['choices'][0]['message']['content'], None | |
else: | |
# Existing setup for other models | |
chat_completion = openai.ChatCompletion.create( | |
model=model, | |
messages=[{"role": "user", "content": user_input}], | |
max_tokens=max_tokens, | |
top_p=top_p | |
) | |
return chat_completion.choices[0].message.content, None | |
except Exception as e: | |
return None, str(e) | |
# Adjust the title based on the selected model | |
st.header(f"`{model_display_name}` Model") | |
with st.expander("About this app"): | |
st.write(f""" | |
This Chatbot app allows users to interact with various models including the new LLM models. | |
π‘ For decent answers, you'd want to increase the `Max Tokens` value from `100` to `500`. | |
""") | |
if "api_key" not in st.session_state: | |
st.session_state.api_key = "" | |
with st.sidebar: | |
max_tokens = st.slider('Max Tokens', 10, 500, 100) | |
top_p = st.slider('Top P', 0.0, 1.0, 0.5, 0.05) | |
if max_tokens > 100: | |
user_provided_api_key = st.text_input("π Your DeepInfra API Key", value=st.session_state.api_key, type='password') | |
if user_provided_api_key: | |
st.session_state.api_key = user_provided_api_key | |
if not st.session_state.api_key: | |
st.warning("βοΈ If you want to try this app with more than `100` tokens, you must provide your own DeepInfra API key. Get yours here β https://deepinfra.com/dash/api_keys") | |
if max_tokens <= 100 or st.session_state.api_key: | |
if "messages" not in st.session_state: | |
st.session_state.messages = [{"role": "assistant", "content": "How may I assist you today?"}] | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.write(message["content"]) | |
if prompt := st.chat_input(): | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.chat_message("assistant"): | |
with st.spinner("Thinking..."): | |
response, error = get_response(st.session_state.api_key, MODEL_CODELLAMA, prompt, max_tokens, top_p) | |
if error: | |
st.error(f"Error: {error}") | |
else: | |
placeholder = st.empty() | |
placeholder.markdown(response) | |
message = {"role": "assistant", "content": response} | |
st.session_state.messages.append(message) | |
# Clear chat history function and button | |
def clear_chat_history(): | |
st.session_state.messages = [{"role": "assistant", "content": "How may I assist you today?"}] | |
st.sidebar.button('Clear Chat History', on_click=clear_chat_history) | |