Update app.py
Browse files
app.py
CHANGED
@@ -1,75 +1,92 @@
|
|
1 |
import os
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from llama_index.node_parser import SemanticSplitterNodeParser
|
5 |
from llama_index.embeddings import OpenAIEmbedding
|
6 |
from llama_index.ingestion import IngestionPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
from pinecone.grpc import PineconeGRPC
|
8 |
from pinecone import ServerlessSpec
|
9 |
-
from llama_index.vector_stores import PineconeVectorStore
|
10 |
-
from llama_index import VectorStoreIndex
|
11 |
-
from llama_index.retrievers import VectorIndexRetriever
|
12 |
-
from llama_index.query_engine import RetrieverQueryEngine
|
13 |
|
14 |
-
|
15 |
-
openai_api_key = os.getenv("OPENAI_API_KEY")
|
16 |
-
pinecone_api_key = os.getenv("PINECONE_API_KEY")
|
17 |
-
index_name = os.getenv("INDEX_NAME")
|
18 |
-
|
19 |
-
# Initialize OpenAI client
|
20 |
-
client = OpenAI(api_key=openai_api_key)
|
21 |
|
22 |
# Initialize connection to Pinecone
|
23 |
pc = PineconeGRPC(api_key=pinecone_api_key)
|
|
|
24 |
|
25 |
# Initialize your index
|
26 |
-
if index_name not in pc.list_indexes():
|
27 |
-
spec = ServerlessSpec(replicas=1, pod_type="p1")
|
28 |
-
pc.create_index(name=index_name, dimension=1536, spec=spec)
|
29 |
-
|
30 |
pinecone_index = pc.Index(index_name)
|
31 |
|
32 |
# Initialize VectorStore
|
33 |
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
|
|
|
34 |
pinecone_index.describe_index_stats()
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
vector_index = VectorStoreIndex.from_vector_store(vector_store=vector_store)
|
|
|
|
|
38 |
retriever = VectorIndexRetriever(index=vector_index, similarity_top_k=5)
|
39 |
-
query_engine = RetrieverQueryEngine(retriever=retriever)
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
SemanticSplitterNodeParser(buffer_size=1, breakpoint_percentile_threshold=95, embed_model=embed_model),
|
46 |
-
embed_model,
|
47 |
-
],
|
48 |
-
)
|
49 |
|
50 |
-
def
|
51 |
response = query_engine.query(query)
|
52 |
return response.response
|
53 |
|
54 |
-
#
|
55 |
-
|
|
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
#
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
st.markdown(prompt)
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
st.markdown(response)
|
75 |
-
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
|
1 |
import os
|
2 |
+
from getpass import getpass
|
3 |
+
import gradio as gr
|
4 |
+
import random
|
5 |
+
import time
|
6 |
+
|
7 |
+
pinecone_api_key = os.getenv("PINECONE_API_KEY") or getpass("Enter your Pinecone API Key: ")
|
8 |
+
openai_api_key = os.getenv("OPENAI_API_KEY") or getpass("Enter your OpenAI API Key: ")
|
9 |
+
|
10 |
from llama_index.node_parser import SemanticSplitterNodeParser
|
11 |
from llama_index.embeddings import OpenAIEmbedding
|
12 |
from llama_index.ingestion import IngestionPipeline
|
13 |
+
|
14 |
+
# This will be the model we use both for Node parsing and for vectorization
|
15 |
+
embed_model = OpenAIEmbedding(api_key=openai_api_key)
|
16 |
+
|
17 |
+
# Define the initial pipeline
|
18 |
+
pipeline = IngestionPipeline(
|
19 |
+
transformations=[
|
20 |
+
SemanticSplitterNodeParser(
|
21 |
+
buffer_size=1,
|
22 |
+
breakpoint_percentile_threshold=95,
|
23 |
+
embed_model=embed_model,
|
24 |
+
),
|
25 |
+
embed_model,
|
26 |
+
],
|
27 |
+
)
|
28 |
+
|
29 |
from pinecone.grpc import PineconeGRPC
|
30 |
from pinecone import ServerlessSpec
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
from llama_index.vector_stores import PineconeVectorStore
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
# Initialize connection to Pinecone
|
35 |
pc = PineconeGRPC(api_key=pinecone_api_key)
|
36 |
+
index_name = "anualreport"
|
37 |
|
38 |
# Initialize your index
|
|
|
|
|
|
|
|
|
39 |
pinecone_index = pc.Index(index_name)
|
40 |
|
41 |
# Initialize VectorStore
|
42 |
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
|
43 |
+
|
44 |
pinecone_index.describe_index_stats()
|
45 |
|
46 |
+
from llama_index import VectorStoreIndex
|
47 |
+
from llama_index.retrievers import VectorIndexRetriever
|
48 |
+
|
49 |
+
# Set the OpenAI API key if not already set
|
50 |
+
if not os.getenv('OPENAI_API_KEY'):
|
51 |
+
os.environ['OPENAI_API_KEY'] = openai_api_key
|
52 |
+
|
53 |
+
# Instantiate VectorStoreIndex object from our vector_store object
|
54 |
vector_index = VectorStoreIndex.from_vector_store(vector_store=vector_store)
|
55 |
+
|
56 |
+
# Grab 5 search results
|
57 |
retriever = VectorIndexRetriever(index=vector_index, similarity_top_k=5)
|
|
|
58 |
|
59 |
+
from llama_index.query_engine import RetrieverQueryEngine
|
60 |
+
|
61 |
+
# Pass in your retriever from above, which is configured to return the top 5 results
|
62 |
+
query_engine = RetrieverQueryEngine(retriever=retriever)
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
def query_anual_report(query):
|
65 |
response = query_engine.query(query)
|
66 |
return response.response
|
67 |
|
68 |
+
# Define the chat functions
|
69 |
+
def user(user_message, history):
|
70 |
+
return "", history + [[user_message, None]]
|
71 |
|
72 |
+
def bot(history):
|
73 |
+
bot_message = query_anual_report(history[-1][0])
|
74 |
+
history[-1][1] = ""
|
75 |
+
for character in bot_message:
|
76 |
+
history[-1][1] += character
|
77 |
+
time.sleep(0.01) # Reduced sleep time to make response appear faster
|
78 |
+
yield history
|
79 |
|
80 |
+
# Define Gradio Blocks interface
|
81 |
+
with gr.Blocks() as demo:
|
82 |
+
chatbot = gr.Chatbot()
|
83 |
+
msg = gr.Textbox()
|
84 |
+
clear = gr.Button("Clear")
|
85 |
|
86 |
+
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
87 |
+
bot, chatbot, chatbot
|
88 |
+
)
|
89 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
|
|
90 |
|
91 |
+
if __name__ == "__main__":
|
92 |
+
demo.launch()
|
|
|
|