Spaces:
Runtime error
Runtime error
import torch | |
from gfpgan.archs.arcface_arch import BasicBlock, Bottleneck, ResNetArcFace | |
def test_resnetarcface(): | |
"""Test arch: ResNetArcFace.""" | |
# model init and forward (gpu) | |
if torch.cuda.is_available(): | |
net = ResNetArcFace(block='IRBlock', layers=(2, 2, 2, 2), use_se=True).cuda().eval() | |
img = torch.rand((1, 1, 128, 128), dtype=torch.float32).cuda() | |
output = net(img) | |
assert output.shape == (1, 512) | |
# -------------------- without SE block ----------------------- # | |
net = ResNetArcFace(block='IRBlock', layers=(2, 2, 2, 2), use_se=False).cuda().eval() | |
output = net(img) | |
assert output.shape == (1, 512) | |
def test_basicblock(): | |
"""Test the BasicBlock in arcface_arch""" | |
block = BasicBlock(1, 3, stride=1, downsample=None).cuda() | |
img = torch.rand((1, 1, 12, 12), dtype=torch.float32).cuda() | |
output = block(img) | |
assert output.shape == (1, 3, 12, 12) | |
# ----------------- use the downsmaple module--------------- # | |
downsample = torch.nn.UpsamplingNearest2d(scale_factor=0.5).cuda() | |
block = BasicBlock(1, 3, stride=2, downsample=downsample).cuda() | |
img = torch.rand((1, 1, 12, 12), dtype=torch.float32).cuda() | |
output = block(img) | |
assert output.shape == (1, 3, 6, 6) | |
def test_bottleneck(): | |
"""Test the Bottleneck in arcface_arch""" | |
block = Bottleneck(1, 1, stride=1, downsample=None).cuda() | |
img = torch.rand((1, 1, 12, 12), dtype=torch.float32).cuda() | |
output = block(img) | |
assert output.shape == (1, 4, 12, 12) | |
# ----------------- use the downsmaple module--------------- # | |
downsample = torch.nn.UpsamplingNearest2d(scale_factor=0.5).cuda() | |
block = Bottleneck(1, 1, stride=2, downsample=downsample).cuda() | |
img = torch.rand((1, 1, 12, 12), dtype=torch.float32).cuda() | |
output = block(img) | |
assert output.shape == (1, 4, 6, 6) | |