Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig | |
# Load the model and tokenizer from your Hugging Face Hub repository | |
model_name = "abdulllah01/outputs" # Replace with your Hugging Face repo name | |
# Load the model configuration first and modify it if necessary | |
config = AutoConfig.from_pretrained(model_name) | |
if hasattr(config, 'quantization_config'): | |
config.quantization_config = None # Disable any quantization settings | |
# Load the model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, config=config) | |
# Streamlit interface | |
st.title("Tech Support Chatbot") | |
st.write("Ask your technical support questions below:") | |
# Text input for the question | |
user_input = st.text_input("Your question:", "") | |
if user_input: | |
# Generate a response using the model | |
inputs = tokenizer.encode(user_input, return_tensors="pt") | |
response = model.generate(inputs, max_length=100) | |
answer = tokenizer.decode(response[0], skip_special_tokens=True) | |
st.write("**Answer:**", answer) | |