import streamlit as st from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig # Load the model and tokenizer from your Hugging Face Hub repository model_name = "abdulllah01/outputs" # Replace with your Hugging Face repo name # Load the model configuration first and modify it if necessary config = AutoConfig.from_pretrained(model_name) if hasattr(config, 'quantization_config'): config.quantization_config = None # Disable any quantization settings # Load the model and tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, config=config) # Streamlit interface st.title("Tech Support Chatbot") st.write("Ask your technical support questions below:") # Text input for the question user_input = st.text_input("Your question:", "") if user_input: # Generate a response using the model inputs = tokenizer.encode(user_input, return_tensors="pt") response = model.generate(inputs, max_length=100) answer = tokenizer.decode(response[0], skip_special_tokens=True) st.write("**Answer:**", answer)