UrduOCR-UTRNet / app.py
Abdur Rahman
Deploy to HuggingFace spaces
390ca68
raw
history blame
2.3 kB
import torch
import gradio as gr
from read import text_recognizer
from model import Model
from utils import CTCLabelConverter
from kraken import binarization
from kraken import pageseg as detection_model
from PIL import ImageDraw
""" vocab / character number configuration """
file = open("UrduGlyphs.txt","r",encoding="utf-8")
content = file.readlines()
content = ''.join([str(elem).strip('\n') for elem in content])
content = content+" "
""" model configuration """
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
converter = CTCLabelConverter(content)
recognition_model = Model(num_class=len(converter.character), device=device)
modrecognition_modelel = recognition_model.to(device)
recognition_model.load_state_dict(torch.load("best_norm_ED.pth", map_location=device))
recognition_model.eval()
examples = ["1.jpg","2.jpg","3.jpg"]
input = gr.Image(type="pil",image_mode="RGB", label="Input Image")
def predict(input):
"Line Detection"
bw_input = binarization.nlbin(input)
bounding_boxes = detection_model.segment(bw_input)['boxes']
bounding_boxes.sort(key=lambda x: x[1])
"Draw the bounding boxes"
draw = ImageDraw.Draw(input)
for box in bounding_boxes:
draw.rectangle(box, outline='red', width=3)
"Crop the detected lines"
cropped_images = []
for box in bounding_boxes:
cropped_images.append(input.crop(box))
len(cropped_images)
"Recognize the text"
texts = []
for img in cropped_images:
texts.append(text_recognizer(img, recognition_model, converter, device))
"Join the text"
text = "\n".join(texts)
"Return the image with bounding boxes and the text"
return input,text
output_image = gr.Image(type="pil",image_mode="RGB",label="Detected Lines")
output_text = gr.Textbox(label="Recognized Text",interactive=True,show_copy_button=True)
iface = gr.Interface(predict,
inputs=input,
outputs=[output_image,output_text],
title="End-to-End Urdu OCR",
description="Demo Web App For UTRNet (https://github.com/abdur75648/UTRNet-High-Resolution-Urdu-Text-Recognition)",
examples=examples,
allow_flagging="never")
iface.launch()