Spaces:
Running
Running
# A simplified version of the original code - https://github.com/abdur75648/UTRNet-High-Resolution-Urdu-Text-Recognition | |
import torch.nn as nn | |
class BidirectionalLSTM(nn.Module): | |
def __init__(self, input_size, hidden_size, output_size): | |
super(BidirectionalLSTM, self).__init__() | |
self.rnn = nn.LSTM(input_size, hidden_size, bidirectional=True, batch_first=True) | |
self.linear = nn.Linear(hidden_size * 2, output_size) | |
def forward(self, input): | |
""" | |
input : visual feature [batch_size x T x input_size] | |
output : contextual feature [batch_size x T x output_size] | |
""" | |
self.rnn.flatten_parameters() | |
recurrent, _ = self.rnn(input) # batch_size x T x input_size -> batch_size x T x (2*hidden_size) | |
output = self.linear(recurrent) # batch_size x T x output_size | |
return output | |
class LSTM(nn.Module): | |
def __init__(self, input_size, hidden_size, output_size): | |
super(LSTM, self).__init__() | |
self.rnn = nn.LSTM(input_size, hidden_size, batch_first=True) | |
self.linear = nn.Linear(hidden_size, output_size) | |
def forward(self, input): | |
""" | |
input : visual feature [batch_size x T x input_size] | |
output : contextual feature [batch_size x T x output_size] | |
""" | |
self.rnn.flatten_parameters() | |
recurrent, _ = self.rnn(input) # batch_size x T x input_size -> batch_size x T x hidden_size | |
output = self.linear(recurrent) # batch_size x T x output_size | |
return output |