# A simplified version of the original code - https://github.com/abdur75648/UTRNet-High-Resolution-Urdu-Text-Recognition import torch import torch.nn as nn import torch.nn.functional as F # Code For UNet Feature Extractor - Source - https://github.com/milesial/Pytorch-UNet class DoubleConv(nn.Module): """(convolution => [BN] => ReLU) * 2""" def __init__(self, in_channels, out_channels, mid_channels=None): super().__init__() if not mid_channels: mid_channels = out_channels self.double_conv = nn.Sequential( nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(mid_channels), nn.ReLU(inplace=True), nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True) ) def forward(self, x): return self.double_conv(x) class Down(nn.Module): """Downscaling with maxpool then double conv""" def __init__(self, in_channels, out_channels): super().__init__() self.maxpool_conv = nn.Sequential( nn.MaxPool2d(2), DoubleConv(in_channels, out_channels) ) def forward(self, x): return self.maxpool_conv(x) class Up(nn.Module): """Upscaling then double conv""" def __init__(self, in_channels, out_channels): super().__init__() self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2) self.conv = DoubleConv(in_channels, out_channels) def forward(self, x1, x2): x1 = self.up(x1) # input is CHW diffY = x2.size()[2] - x1.size()[2] diffX = x2.size()[3] - x1.size()[3] x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2]) x = torch.cat([x2, x1], dim=1) return self.conv(x) class OutConv(nn.Module): def __init__(self, in_channels, out_channels): super(OutConv, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1) def forward(self, x): return self.conv(x) class UNet(nn.Module): def __init__(self, n_channels=1, n_classes=512): super(UNet, self).__init__() self.n_channels = n_channels self.n_classes = n_classes self.inc = DoubleConv(n_channels, 32) self.down1 = Down(32, 64) self.down2 = Down(64, 128) self.down3 = Down(128, 256) self.down4 = Down(256, 512) self.up1 = Up(512, 256) self.up2 = Up(256, 128) self.up3 = Up(128, 64) self.up4 = Up(64, 32) self.outc = OutConv(32, n_classes) def forward(self, x): # print(x.shape) # torch.Size([1, 1, 32, 400]) x1 = self.inc(x) # print(x1.shape) # torch.Size([1, 32, 32, 400]) x2 = self.down1(x1) # print(x2.shape) # torch.Size([1, 64, 16, 200]) x3 = self.down2(x2) # print(x3.shape) # torch.Size([1, 128, 8, 100]) x4 = self.down3(x3) # print(x4.shape) # torch.Size([1, 256, 4, 50]) x5 = self.down4(x4) # print(x5.shape) # torch.Size([1, 512, 2, 25]) # print("Upscaling...") x = self.up1(x5, x4) # print(x.shape) # torch.Size([1, 256, 4, 50]) x = self.up2(x, x3) # print(x.shape) # torch.Size([1, 128, 8, 100]) x = self.up3(x, x2) # print(x.shape) # torch.Size([1, 64, 16, 200]) x = self.up4(x, x1) # print(x.shape) # torch.Size([1, 32, 32, 400]) logits = self.outc(x) # print(logits.shape) # torch.Size([1, 512, 32, 400]) return logits # x = torch.randn(1, 1, 32, 400) # net = UNet() # out = net(x) # print(out.shape)