File size: 17,085 Bytes
d891407 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
import os
import json
import tensorflow as tf
from tqdm import tqdm
from GPT import *
import pickle
import argparse
import sys
def save_module(save_weights, model, vectorizer, save_tokenizer):
# Save the GPT Model
with open(save_weights, 'wb') as file:
pickle.dump(model.weights, file)
#Save the Vectorizer Model
vocabulary = vectorizer.get_vocabulary()
# Encode the vocabulary as JSON-compatible strings
encoded_vocabulary = [word.encode('unicode_escape').decode('utf-8') for word in vocabulary]
encoded_vocabulary = encoded_vocabulary[2:]
# Save the encoded vocabulary to a JSON file
with open(save_tokenizer, 'w') as f:
json.dump(encoded_vocabulary, f)
print("Vocabulary size saved: " + str(len(encoded_vocabulary)))
def read_file(f, vectorizer, chunk_size = 1024, starting_chunk = 0, ending_chunk = 5, gpt_input = 10):
i = 0
chunk = []
while True:
data = f.read(chunk_size)
if not data or i > ending_chunk:
break
if i >= starting_chunk and i <= ending_chunk:
file_contents = data.split()
input_tokens, output_tokens = [], []
for j in range(len(file_contents) - gpt_input - 1):
input_tokens += [file_contents[j : j + gpt_input]]
output_tokens += [file_contents[j + gpt_input]]
X = [' '.join(input_tokens[j]) for j in range(len(input_tokens))]
Y = output_tokens
X = vectorizer(X)
Y = vectorizer(Y)
output = tf.concat([X, Y], 1)
yield output
i += 1
def get_model(gpt_input, d_model, h, vocab_size, decoder_stacks, GPT_attention):
input_words = tf.keras.layers.Input((gpt_input))
embedding = tf.keras.layers.Embedding(vocab_size + 2, d_model)(input_words)
positional_enc = PositionalEmbedding(words = gpt_input, embedding_size = d_model)(embedding)
decoder = Decoder(num_heads = h, key_dim = gpt_input, key_embedding = d_model, GPT_attention = GPT_attention)(positional_enc)
for _ in range(decoder_stacks - 1):
decoder = Decoder(num_heads = h, key_dim = gpt_input, key_embedding = d_model, GPT_attention = GPT_attention)(decoder)
decoder = tf.keras.layers.Flatten()(decoder)
linear_layer = tf.keras.layers.Dense(vocab_size + 3)(decoder)
softmax = tf.nn.softmax(linear_layer)
GPT = tf.keras.Model(inputs = input_words, outputs = softmax)
return GPT
def MinimalGPT(data_path='.',
learning_rate=0,
output_length=0,
epochs = 1,
batch_size = 1,
gpt_input=10,
d_model=128,
h=8,
decoder_stacks=1,
starting_chunk = 0,
ending_chunk = 5,
chunk_size = 10,
token_end=40000,
vocabulary_start = 0,
vocabulary_end = 40000,
save=False,
load_tokenizer=None,
load_weights=None,
save_tokenizer=None,
save_weights=None,
optimizer=None,
inference_only = False,
return_model_and_vectorizer = False,
return_model_and_vectorizer_and_output = False,
GPT_attention = False,
TPU = False):
if chunk_size:
chunk_size *= 1024
if inference_only == False:
with open(data_path, 'r', encoding = 'utf-8') as file:
corpus = file.read()
#file_contents = corpus.split()[token_start : token_end]
#print("Total tokens: " + str(len(file_contents)))
if load_tokenizer:
with open(load_tokenizer, 'r') as f:
encoded_vocabulary = json.load(f)
# Decode the encoded vocabulary to original strings
vocabulary = [word.encode('utf-8').decode('unicode_escape') for word in encoded_vocabulary]
vectorizer = tf.keras.layers.TextVectorization(standardize = None, split = 'whitespace')
vectorizer.set_vocabulary(vocabulary)
vocab_size = vectorizer.vocabulary_size()
else:
vocab = []
for word in tqdm(corpus.split()[vocabulary_start : vocabulary_end]):
vocab += [word]
vocab = list(set(vocab))
vocab_size = len(vocab)
vectorizer = tf.keras.layers.TextVectorization(standardize = None, split = 'whitespace', vocabulary = vocab)
print('New Vectorizer created successfully...')
print("Vocabulary Size: " + str(vocab_size))
del corpus
#if inference_only == False:
# input_tokens, output_tokens = [], []
# for i in tqdm(range(len(file_contents) - gpt_input - 1)):
# input_tokens += [file_contents[i : i + gpt_input]]
# output_tokens += [file_contents[i + gpt_input]]
# X = [' '.join(input_tokens[i]) for i in tqdm(range(len(input_tokens)))]
# Y = output_tokens
# del corpus
# X = vectorizer(X)
# Y = vectorizer(Y)
if load_weights:
model = get_model(gpt_input = gpt_input, d_model = d_model, h = h, decoder_stacks = decoder_stacks, vocab_size = vocab_size - 2, GPT_attention = GPT_attention)
with open(load_weights, 'rb') as file:
W = pickle.load(file)
model.set_weights(W)
else:
model = get_model(gpt_input = gpt_input, d_model = d_model, h = h, decoder_stacks = decoder_stacks, vocab_size = vocab_size, GPT_attention = GPT_attention)
print(model.summary())
if inference_only == False:
# Compile the model
if not optimizer:
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=learning_rate), loss='sparse_categorical_crossentropy')
else:
model.compile(optimizer=optimizer, loss='sparse_categorical_crossentropy')
# Train the model
if learning_rate > 0:
for epoch in tqdm(range(epochs)):
with open(data_path, 'r', encoding='utf-8') as f:
chunk_number = 1
for chunk in read_file(f,
vectorizer,
chunk_size,
starting_chunk,
ending_chunk,
gpt_input):
print('Chunk_size: ' + str(chunk.shape[0]))
model.fit(chunk[:, :gpt_input], tf.reshape(chunk[:, -1], (-1, 1)), batch_size = batch_size, epochs=1)
print("Chunk Number " + str(chunk_number) + "/" +str(ending_chunk - starting_chunk + 1) + " processed!")
chunk_number += 1
# Print the output of the Model
output_seq = generate_output(gpt_input = gpt_input, model = model, vectorizer = vectorizer, text_size = output_length, input_sequence = [])
if save == True and TPU == False:
print('Saveeeeee')
save_module(save_weights, model, vectorizer, save_tokenizer)
if save == True and TPU == True:
return save_weights, model, vectorizer, save_tokenizer, output_seq
# Save the GPT Model
#with open(save_weights, 'wb') as file:
# pickle.dump(model.weights, file)
#Save the Vectorizer Model
#vocabulary = vectorizer.get_vocabulary()
# Encode the vocabulary as JSON-compatible strings
#encoded_vocabulary = [word.encode('unicode_escape').decode('utf-8') for word in vocabulary]
#encoded_vocabulary = encoded_vocabulary[2:]
# Save the encoded vocabulary to a JSON file
#with open(save_tokenizer, 'w') as f:
# json.dump(encoded_vocabulary, f)
# print("Vocabulary size saved: " + str(len(encoded_vocabulary)))
if return_model_and_vectorizer:
return model, vectorizer
elif return_model_and_vectorizer_and_output:
return model, vectorizer, output_seq.replace('@@ ', '')
else:
return output_seq.replace('@@ ', '')
# Example code to execute when the script file is called
def main():
print("This code is executed when the script file is called directly.")
# Check if the script is being run as the main module
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-d', '--data-path', help='File: Corresponding to corpus or training text [String]')
parser.add_argument('-l', '--learning-rate', help='Float: Learning Rate. The model will train ONLY IF the rate is > 0, skip otherwise [Float]', type=float)
parser.add_argument('-ol', '--output-length', help='Length of the output sequence to be generated', type=int)
parser.add_argument('-e', '--epochs', help='Number of training Epochs [Int]', type=int)
parser.add_argument('-b', '--batch-size', help='Size of each batch [Int]', type=int)
parser.add_argument('-s', '--gpt-input', help='Number of Tokens of text the model inputs at a time [Int]', type=int)
parser.add_argument('-dm', '--d-model', help='Embedding layer output dimensions [Int]', type=int)
parser.add_argument('-p', '--multi-head', help='Number of Multi-head Attention layer in parallel [Int]', type=int)
parser.add_argument('-ds', '--decoder-stacks', help='Number of stacked Decoder layer [Int]', type=int)
parser.add_argument('-sc', '--chunk-start', help='The chunk number in the corpus to mark it as the starting point of the training [Int]', type=int)
parser.add_argument('-ec', '--chunk-end', help='The chunk number in the corpus to mark it as the end point of the training [Int]', type=int)
parser.add_argument('-csz', '--chunk-size', help='The size of each chunk in KB.', type=int)
parser.add_argument('-vs', '--vocabulary-start', help='Token number from the corpus to mark the starting point of vocabulary data [Int]', type=int)
parser.add_argument('-ve', '--vocabulary-end', help='Token number from the corpus to mark the end point of vocabulary data [Int]', type=int)
parser.add_argument('-sd', '--save', help='Save the Model and Vectorizer data to disk [True/False]', action='store_true')
parser.add_argument('-lt', '--load-tokenizer', help='File: Vectorization layer [File]')
parser.add_argument('-lw', '--load-weights', help='File: Model Weights [File]')
parser.add_argument('-st', '--save-tokenizer', help='File: Saving Vectorizer File [File]')
parser.add_argument('-sw', '--save-weights', help='File: Saving Model Weights[File]')
parser.add_argument('-ot', '--optimizer', help='Optimizer consistent to TensorFlow optimizer class [tf.keras.optimizers]')
parser.add_argument('-i', '--inference-only', help='Only Print the output of the model in Inference Mode [True/False]', action='store_true')
parser.add_argument('-mv', '--model-vectorizer', help='Return Model, Vectorizer Tuple [True/False]', action='store_true')
parser.add_argument('-mvo', '--model-vectorizer-output', help='Return Model, Vectorizer, Output Tuple [True/False]', action='store_true')
parser.add_argument('-ga', '--gpt-style-attention', help='Uses GPT-styled attention. Note: (d-model) parameter should be divisible by (multi-head), otherwise the program will throw an error! [True/False]', action='store_true')
parser.add_argument('-tpu', '--TPU', help='Use Tensor Processor Units (Distributed Learning)', action='store_true')
args = parser.parse_args()
data_path = args.data_path
learning_rate = args.learning_rate
output_length = args.output_length
epochs = args.epochs
batch_size = args.batch_size
gpt_input = args.gpt_input
d_model = args.d_model
h = args.multi_head
stacks = args.decoder_stacks
chunk_start = args.chunk_start
chunk_end = args.chunk_end
chunk_size = args.chunk_size
vocabulary_start = args.vocabulary_start
vocabulary_end = args.vocabulary_end
save = args.save
load_tokenizer = args.load_tokenizer
load_weights = args.load_weights
save_tokenizer = args.save_tokenizer
save_weights = args.save_weights
optimizer = args.optimizer
inference_only = args.inference_only
model_and_vectorizer = args.model_vectorizer
GPT_attention = args.gpt_style_attention
model_vectorizer_output = args.model_vectorizer_output
configuration = {
'data_path': args.data_path,
'learning_rate': args.learning_rate,
'output_length': args.output_length,
'epochs': args.epochs,
'batch_size': args.batch_size,
'gpt_input': args.gpt_input,
'd_model': args.d_model,
'h': args.multi_head,
'stacks': args.decoder_stacks,
'chunk_start': args.chunk_start,
'chunk_end': args.chunk_end,
'chunk_size': args.chunk_size,
'vocabulary_start': args.vocabulary_start,
'vocabulary_end': args.vocabulary_end,
'save': args.save,
'load_tokenizer': args.load_tokenizer,
'load_weights': args.load_weights,
'save_tokenizer': args.save_tokenizer,
'save_weights': args.save_weights,
'optimizer': args.optimizer,
'inference_only': args.inference_only,
'model_and_vectorizer': args.model_vectorizer,
'model_vectorizer_output': args.model_vectorizer_output,
'GPT_Attention' : args.gpt_style_attention
}
# Save the configuration to a JSON file
with open('last-configuration.json', 'w') as file:
json.dump(configuration, file)
if args.TPU == True:
resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='')
tf.config.experimental_connect_to_cluster(resolver)
# This is the TPU initialization code that has to be at the beginning.
tf.tpu.experimental.initialize_tpu_system(resolver)
print("All devices: ", tf.config.list_logical_devices('TPU'))
strategy = tf.distribute.TPUStrategy(resolver)
with strategy.scope():
output = MinimalGPT(data_path = data_path,
learning_rate = learning_rate,
output_length = output_length,
epochs = epochs,
batch_size = batch_size,
gpt_input = gpt_input,
d_model = d_model,
h = h,
decoder_stacks = stacks,
starting_chunk = chunk_start,
ending_chunk = chunk_end,
chunk_size = chunk_size,
vocabulary_start = vocabulary_start,
vocabulary_end = vocabulary_end,
save = save,
load_tokenizer = load_tokenizer,
load_weights = load_weights,
save_tokenizer = save_tokenizer,
save_weights = save_weights,
optimizer = optimizer,
inference_only = inference_only,
return_model_and_vectorizer = model_and_vectorizer,
return_model_and_vectorizer_and_output = model_vectorizer_output,
GPT_attention = GPT_attention,
TPU = True)
save_module(output[0], output[1], output[2], output[3])
print(output[4])
sys.exit(0)
output = MinimalGPT(data_path = data_path,
learning_rate = learning_rate,
output_length = output_length,
epochs = epochs,
batch_size = batch_size,
gpt_input = gpt_input,
d_model = d_model,
h = h,
decoder_stacks = stacks,
starting_chunk = chunk_start,
ending_chunk = chunk_end,
chunk_size = chunk_size,
vocabulary_start = vocabulary_start,
vocabulary_end = vocabulary_end,
save = save,
load_tokenizer = load_tokenizer,
load_weights = load_weights,
save_tokenizer = save_tokenizer,
save_weights = save_weights,
optimizer = optimizer,
inference_only = inference_only,
return_model_and_vectorizer = model_and_vectorizer,
return_model_and_vectorizer_and_output = model_vectorizer_output,
GPT_attention = GPT_attention,
TPU = False)
print(output) |