Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import requests | |
from bs4 import BeautifulSoup | |
from bs4.element import Comment | |
def get_text_from_url(url): | |
response = requests.get(url) | |
soup = BeautifulSoup(response.text, 'html.parser') | |
texts = soup.find_all(text=True) | |
visible_texts = filter(tag_visible, texts) | |
return u"\n".join(t.strip() for t in visible_texts) | |
def tag_visible(element): | |
if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: | |
return False | |
if isinstance(element, Comment): | |
return False | |
return True | |
text_list = [] | |
homepage_url = "https://sites.google.com/view/abhilashnandy/home/" | |
extensions = ["", "pmrf-profile-page"] | |
for ext in extensions: | |
url_text = get_text_from_url(homepage_url+ext) | |
text_list.append(url_text) | |
# Repeat for sub-links if necessary | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
client = InferenceClient("stabilityai/stablelm-2-1_6b-chat")#("stabilityai/stablelm-2-1_6b-chat")#("TheBloke/TinyLlama-1.1B-Chat-v1.0-GPTQ")#("TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF")#("QuantFactory/Meta-Llama-3-8B-Instruct-GGUF")#("HuggingFaceH4/zephyr-7b-beta") | |
SYSTEM_MESSAGE = "You are a QA chatbot to answer queries (in less than 30 words) on my homepage that has the following information -\n\n" + "\n\n".join(text_list) + "\n\n" | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message=SYSTEM_MESSAGE, | |
max_tokens=80, | |
temperature=0.7, | |
top_p=0.95, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
# if val[0]: | |
if len(val)>=1: | |
messages.append({"role": "user", "content": "Question: "+val[0]}) | |
# if val[1]: | |
if len(val)>=2: | |
messages.append({"role": "assistant", "content": "Answer: "+val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
# initial_message = [("user", "Yo who dis Abhilash?")] | |
markdown_note = "## Ask Anything About Me! (Might show a tad bit of hallucination!)" | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown(markdown_note) | |
gr.ChatInterface( | |
respond, | |
examples = ["Yo who dis Abhilash?", "What is Abhilash's most recent publication?"], | |
# message=initial_message, | |
additional_inputs=[ | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=8192, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
], | |
# value=initial_message | |
) | |
if __name__ == "__main__": | |
demo.launch() |