Spaces:
Runtime error
Runtime error
import spacy | |
import gradio as gr | |
from spacy.pipeline import EntityRuler | |
from spacy import displacy | |
import jsonlines | |
from spacy.cli import download | |
download('en_core_web_sm') | |
nlp = spacy.load('en_core_web_sm') | |
# Create list with entity labels from jsonl file | |
with jsonlines.open("skill_patterns.jsonl") as f: | |
created_entities = [line['label'].upper() for line in f.iter()] | |
def extract_text_from_word(txt): | |
'''Opens en reads in a .doc or .docx file from path''' | |
return txt.replace('\n', ' ').replace('\t', ' ').lower() | |
def add_newruler_to_pipeline(skill_pattern_path): | |
'''Reads in all created patterns from a JSONL file and adds it to the pipeline after PARSER and before NER''' | |
# new_ruler = EntityRuler(nlp).from_disk(skill_pattern_path) | |
ruler=nlp.add_pipe("entity_ruler",after='parser') | |
ruler.from_disk(skill_pattern_path) # loads patterns only | |
def create_skill_set(doc): | |
'''Create a set of the extracted skill entities of a doc''' | |
return set([ent.label_.upper()[6:] for ent in doc.ents if 'skill' in ent.label_.lower()]) | |
def create_skillset_dict(resume_names, resume_texts): | |
'''Create a dictionary containing a set of the extracted skills. Name is key, matching skillset is value''' | |
skillsets = [create_skill_set(resume_text) for resume_text in resume_texts] | |
return dict(zip(resume_names, skillsets)) | |
def match_skills(vacature_set, cv_set, resume_name): | |
'''Get intersection of resume skills and job offer skills and return match percentage''' | |
if len(vacature_set) < 1: | |
print('could not extract skills from job offer text') | |
else: | |
pct_match = round(len(vacature_set.intersection(cv_set[resume_name])) / len(vacature_set) * 100, 0) | |
print(resume_name + " has a {}% skill match on this job offer".format(pct_match)) | |
print('Required skills: {} '.format(vacature_set)) | |
print('Matched skills: {} \n'.format(vacature_set.intersection(cv_set[resume_name]))) | |
return (resume_name, pct_match) | |
add_newruler_to_pipeline("skill_patterns.jsonl") | |
def match(CV,JD): | |
resume_texts=[] | |
resume_texts.append(nlp(CV)) | |
resume_names=['ABHI'] | |
skillset_dict = create_skillset_dict(resume_names, resume_texts) | |
jd_skillset = create_skill_set(nlp(JD)) | |
match_pairs = [match_skills(jd_skillset, skillset_dict, name) for name in skillset_dict.keys()] | |
if match_pairs[0]: | |
return match_pairs[0][1] | |
else: | |
return "No matching skill set." | |
exp=["Who is steve jobs?","What is coldplay?","What is a turing test?","What is the most interesting thing about our universe?","What are the most beautiful places on earth?"] | |
desc="A Machine Learning Based Resume Matcher, to compare Resumes with Job Descriptions. " | |
inp1=gr.inputs.Textbox(lines=10, placeholder=None, default="", label="Resume Details") | |
inp2=gr.inputs.Textbox(lines=10, placeholder=None, default="", label="Job Description") | |
out=gr.outputs.Textbox(type="auto",label="Match Score") | |
iface = gr.Interface(fn=match, inputs=[inp1,inp2], outputs=out,title="A Machine Learning Based Resume Matcher, to compare Resumes with Job Descriptions",article=desc,theme="huggingface",layout='vertical') | |
iface.launch(debug=True) |