import os #os.system('pip install https://huggingface.co/kormilitzin/en_core_med7_lg/resolve/main/en_core_med7_lg-any-py3-none-any.whl') os.system('pip install https://huggingface.co/kormilitzin/en_core_med7_trf/resolve/main/en_core_med7_trf-any-py3-none-any.whl') # Using spacy.load(). #import spacy #nlp = spacy.load("en_core_med7_trf") # Importing as module. #import en_core_med7_trf #nlp = en_core_med7_trf.load()') import gradio as gr from spacy import displacy import spacy med7 = spacy.load("en_core_med7_trf") def get_med7_ent(text): # create distinct colours for labels col_dict = {} seven_colours = ['#e6194B', '#3cb44b', '#ffe119', '#ffd8b1', '#f58231', '#f032e6', '#42d4f4'] for label, colour in zip(med7.pipe_labels['ner'], seven_colours): col_dict[label] = colour options = {'ents': med7.pipe_labels['ner'], 'colors':col_dict} doc = med7(text) html = displacy.render(doc, style='ent',options=options) return html exp=["A patient was prescribed Magnesium hydroxide 400mg/5ml suspension PO of total 30ml bid for the next 5 days."] desc="Med7 — An information extraction model for clinical natural language processing. More information about the model development can be found in recent pre-print: Med7: a transferable clinical natural language processing model for electronic health records." inp=gr.inputs.Textbox(lines=5, placeholder=None, default="", label="Text") out=gr.outputs.HTML(label=None) iface = gr.Interface(fn=get_med7_ent, inputs=inp, outputs=out,examples=exp,article=desc,title="Med7",theme="huggingface",layout='horizontal') iface.launch()