Spaces:
Runtime error
Runtime error
from sentence_transformers import SentenceTransformer, CrossEncoder, util | |
import torch | |
import pickle | |
import pandas as pd | |
import gradio as gr | |
bi_encoder = SentenceTransformer("multi-qa-MiniLM-L6-cos-v1") | |
cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2") | |
corpus_embeddings=pd.read_pickle("corpus_embeddings_cpu.pkl") | |
corpus=pd.read_pickle("corpus.pkl") | |
def search(query,top_k=100): | |
print("Top 5 Answer by the NSE:") | |
print() | |
ans=[] | |
##### Sematic Search ##### | |
# Encode the query using the bi-encoder and find potentially relevant passages | |
question_embedding = bi_encoder.encode(query, convert_to_tensor=True) | |
hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k) | |
hits = hits[0] # Get the hits for the first query | |
##### Re-Ranking ##### | |
# Now, score all retrieved passages with the cross_encoder | |
cross_inp = [[query, corpus[hit['corpus_id']]] for hit in hits] | |
cross_scores = cross_encoder.predict(cross_inp) | |
# Sort results by the cross-encoder scores | |
for idx in range(len(cross_scores)): | |
hits[idx]['cross-score'] = cross_scores[idx] | |
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True) | |
for idx, hit in enumerate(hits[0:5]): | |
ans.append(corpus[hit['corpus_id']]) | |
return ans[0],ans[1],ans[2],ans[3],ans[4] | |
exp=["Who is steve jobs?","What is coldplay?","What is a turing test?","What is the most interesting thing about our universe?","What are the most beautiful places on earth?"] | |
desc="This is a semantic search engine powered by SentenceTransformers (Nils_Reimers) with a retrieval and reranking system on Wikipedia corous. This will return the top 5 results. So Quest on with Transformers." | |
inp=gr.Textbox(lines=1, placeholder=None,label="search you query here") | |
out1=gr.Textbox(type="text", label="Search result 1") | |
out2=gr.Textbox(type="text", label="Search result 2") | |
out3=gr.Textbox(type="text", label="Search result 3") | |
out4=gr.Textbox(type="text", label="Search result 4") | |
out5=gr.Textbox(type="text", label="Search result 5") | |
iface = gr.Interface(fn=search, inputs=inp, outputs=[out1,out2,out3,out4,out5],examples=exp,article=desc,title="Neural Search Engine") | |
iface.launch() |