import requests from bs4 import BeautifulSoup import pandas as pd import gradio as gr from groq import Groq import os from groq import Groq from bs4 import BeautifulSoup import requests import pandas as pd import gradio as gr # Access the GROQ_API_KEY from environment variables api_key = os.getenv("GROQ_API_KEY") if not api_key: raise ValueError("GROQ_API_KEY environment variable is not set.") # Initialize Groq client with the API key client = Groq(api_key=api_key) # Rest of your code remains the same... # Step 1: Scrape the free courses from Analytics Vidhya url = "https://courses.analyticsvidhya.com/pages/all-free-courses" response = requests.get(url) soup = BeautifulSoup(response.content, 'html.parser') courses = [] # Extracting course title, image, and course link for course_card in soup.find_all('header', class_='course-card__img-container'): img_tag = course_card.find('img', class_='course-card__img') if img_tag: title = img_tag.get('alt') image_url = img_tag.get('src') link_tag = course_card.find_previous('a') if link_tag: course_link = link_tag.get('href') if not course_link.startswith('http'): course_link = 'https://courses.analyticsvidhya.com' + course_link courses.append({ 'title': title, 'image_url': image_url, 'course_link': course_link }) # Step 2: Create DataFrame df = pd.DataFrame(courses) client = Groq() def search_courses(query): try: print(f"Searching for: {query}") print(f"Number of courses in database: {len(df)}") # Prepare the prompt for Groq prompt = f"""Given the following query: "{query}" Please analyze the query and rank the following courses based on their relevance to the query. Prioritize courses from Analytics Vidhya. Provide a relevance score from 0 to 1 for each course. Only return courses with a relevance score of 0.5 or higher. Return the results in the following format: Title: [Course Title] Relevance: [Score] Courses: {df['title'].to_string(index=False)} """ print("Sending request to Groq...") # Get response from Groq response = client.chat.completions.create( model="mixtral-8x7b-32768", messages=[ {"role": "system", "content": "You are an AI assistant specialized in course recommendations."}, {"role": "user", "content": prompt} ], temperature=0.2, max_tokens=1000 ) print("Received response from Groq") # Parse Groq's response results = [] print("Groq response content:") print(response.choices[0].message.content) for line in response.choices[0].message.content.split('\n'): if line.startswith('Title:'): title = line.split('Title:')[1].strip() print(f"Found title: {title}") elif line.startswith('Relevance:'): relevance = float(line.split('Relevance:')[1].strip()) print(f"Relevance for {title}: {relevance}") if relevance >= 0.5: matching_courses = df[df['title'] == title] if not matching_courses.empty: course = matching_courses.iloc[0] results.append({ 'title': title, 'image_url': course['image_url'], 'course_link': course['course_link'], 'score': relevance }) print(f"Added course: {title}") else: print(f"Warning: Course not found in database: {title}") print(f"Number of results found: {len(results)}") return sorted(results, key=lambda x: x['score'], reverse=True)[:10] # Return top 10 results except Exception as e: print(f"An error occurred in search_courses: {str(e)}") return [] def gradio_search(query): result_list = search_courses(query) if result_list: html_output = '
' for item in result_list: course_title = item['title'] course_image = item['image_url'] course_link = item['course_link'] relevance_score = round(item['score'] * 100, 2) html_output += f'''
{course_title}

{course_title}

Relevance: {relevance_score}%

View Course
''' html_output += '
' return html_output else: return '

No results found. Please try a different query.

' # Custom CSS for the Gradio interface custom_css = """ body { font-family: Arial, sans-serif; background-color: #f0f2f5; } .container { max-width: 800px; margin: 0 auto; padding: 20px; } .results-container { display: flex; flex-wrap: wrap; justify-content: space-between; } .course-card { background-color: white; border-radius: 8px; box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1); margin-bottom: 20px; overflow: hidden; width: 48%; transition: transform 0.2s; } .course-card:hover { transform: translateY(-5px); } .course-image { width: 100%; height: 150px; object-fit: cover; } .course-info { padding: 15px; } .course-info h3 { margin-top: 0; font-size: 18px; color: #333; } .course-info p { color: #666; font-size: 14px; margin-bottom: 10px; } .course-link { display: inline-block; background-color: #007bff; color: white; padding: 8px 12px; text-decoration: none; border-radius: 4px; font-size: 14px; transition: background-color 0.2s; } .course-link:hover { background-color: #0056b3; } .no-results { text-align: center; color: #666; font-style: italic; } """ # Gradio interface iface = gr.Interface( fn=gradio_search, inputs=gr.Textbox(label="Enter your search query", placeholder="e.g., machine learning, data science, python"), outputs=gr.HTML(label="Search Results"), title="Analytics Vidhya Smart Course Search", description="Find the most relevant courses from Analytics Vidhya based on your query.", theme="huggingface", css=custom_css, examples=[ ["machine learning for beginners"], ["advanced data visualization techniques"], ["python programming basics"], ["Business Analytics"] ], ) if __name__ == "__main__": iface.launch()