abhijitkumarjha88192 commited on
Commit
497fa46
1 Parent(s): b37edc0

init test using steamlit phi3 mini

Browse files
Files changed (3) hide show
  1. app.py +35 -60
  2. old1app.py +63 -0
  3. requirements.txt +7 -1
app.py CHANGED
@@ -1,63 +1,38 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
  )
60
 
 
 
 
 
 
 
61
 
62
- if __name__ == "__main__":
63
- demo.launch()
 
 
1
+ import streamlit as st
2
+ import torch
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
4
+
5
+ st.write('Hello, *World!* :sunglasses:')
6
+
7
+ torch.random.manual_seed(0)
8
+ model_id = "microsoft/Phi-3-medium-128k-instruct"
9
+ model = AutoModelForCausalLM.from_pretrained(
10
+ model_id,
11
+ device_map="cuda",
12
+ torch_dtype="auto",
13
+ trust_remote_code=True,
14
+ )
15
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
16
+
17
+ messages = [
18
+ {"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
19
+ {"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
20
+ {"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
21
+ ]
22
+
23
+ pipe = pipeline(
24
+ "text-generation",
25
+ model=model,
26
+ tokenizer=tokenizer,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  )
28
 
29
+ generation_args = {
30
+ "max_new_tokens": 500,
31
+ "return_full_text": False,
32
+ "temperature": 0.0,
33
+ "do_sample": False,
34
+ }
35
 
36
+ output = pipe(messages, **generation_args)
37
+ print(output[0]['generated_text'])
38
+ st.write(output[0]['generated_text'])
old1app.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
+
4
+ """
5
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ """
7
+ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
+
9
+
10
+ def respond(
11
+ message,
12
+ history: list[tuple[str, str]],
13
+ system_message,
14
+ max_tokens,
15
+ temperature,
16
+ top_p,
17
+ ):
18
+ messages = [{"role": "system", "content": system_message}]
19
+
20
+ for val in history:
21
+ if val[0]:
22
+ messages.append({"role": "user", "content": val[0]})
23
+ if val[1]:
24
+ messages.append({"role": "assistant", "content": val[1]})
25
+
26
+ messages.append({"role": "user", "content": message})
27
+
28
+ response = ""
29
+
30
+ for message in client.chat_completion(
31
+ messages,
32
+ max_tokens=max_tokens,
33
+ stream=True,
34
+ temperature=temperature,
35
+ top_p=top_p,
36
+ ):
37
+ token = message.choices[0].delta.content
38
+
39
+ response += token
40
+ yield response
41
+
42
+ """
43
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
+ """
45
+ demo = gr.ChatInterface(
46
+ respond,
47
+ additional_inputs=[
48
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
+ gr.Slider(
52
+ minimum=0.1,
53
+ maximum=1.0,
54
+ value=0.95,
55
+ step=0.05,
56
+ label="Top-p (nucleus sampling)",
57
+ ),
58
+ ],
59
+ )
60
+
61
+
62
+ if __name__ == "__main__":
63
+ demo.launch()
requirements.txt CHANGED
@@ -1 +1,7 @@
1
- huggingface_hub==0.22.2
 
 
 
 
 
 
 
1
+ huggingface_hub==0.22.2
2
+ gradio
3
+ torch
4
+ torchvision
5
+ torchaudio
6
+ transformers
7
+ streamlit