File size: 14,236 Bytes
c873df0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
import json
from tensorflow.keras.models import model_from_json
from networks.layers import AdaIN, AdaptiveAttention
import tensorflow as tf
import numpy as np
import cv2
import math
from skimage import transform as trans
from scipy.signal import convolve2d
from skimage.color import rgb2yuv, yuv2rgb
from PIL import Image
def save_model_internal(model, path, name, num):
json_model = model.to_json()
with open(path + name + '.json', "w") as json_file:
json_file.write(json_model)
model.save_weights(path + name + '_' + str(num) + '.h5')
def load_model_internal(path, name, num):
with open(path + name + '.json', 'r') as json_file:
model_dict = json_file.read()
mod = model_from_json(model_dict, custom_objects={'AdaIN': AdaIN, 'AdaptiveAttention': AdaptiveAttention})
mod.load_weights(path + name + '_' + str(num) + '.h5')
return mod
def save_training_meta(state_dict, path, num):
with open(path + str(num) + '.json', 'w') as json_file:
json.dump(state_dict, json_file, indent=2)
def load_training_meta(path, num):
with open(path + str(num) + '.json', 'r') as json_file:
state_dict = json.load(json_file)
return state_dict
def log_info(sw, results_dict, iteration):
with sw.as_default():
for key in results_dict.keys():
tf.summary.scalar(key, results_dict[key], step=iteration)
src1 = np.array([[51.642, 50.115], [57.617, 49.990], [35.740, 69.007],
[51.157, 89.050], [57.025, 89.702]],
dtype=np.float32)
# <--left
src2 = np.array([[45.031, 50.118], [65.568, 50.872], [39.677, 68.111],
[45.177, 86.190], [64.246, 86.758]],
dtype=np.float32)
# ---frontal
src3 = np.array([[39.730, 51.138], [72.270, 51.138], [56.000, 68.493],
[42.463, 87.010], [69.537, 87.010]],
dtype=np.float32)
# -->right
src4 = np.array([[46.845, 50.872], [67.382, 50.118], [72.737, 68.111],
[48.167, 86.758], [67.236, 86.190]],
dtype=np.float32)
# -->right profile
src5 = np.array([[54.796, 49.990], [60.771, 50.115], [76.673, 69.007],
[55.388, 89.702], [61.257, 89.050]],
dtype=np.float32)
src = np.array([src1, src2, src3, src4, src5])
src_map = {112: src, 224: src * 2}
# Left eye, right eye, nose, left mouth, right mouth
arcface_src = np.array(
[[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
[41.5493, 92.3655], [70.7299, 92.2041]],
dtype=np.float32)
arcface_src = np.expand_dims(arcface_src, axis=0)
def extract_face(img, bb, absolute_center, mode='arcface', extention_rate=0.05, debug=False):
"""Extract face from image given a bounding box"""
# bbox
x1, y1, x2, y2 = bb + 60
adjusted_absolute_center = (absolute_center[0] + 60, absolute_center[1] + 60)
if debug:
print(bb + 60)
x1, y1, x2, y2 = bb
cv2.rectangle(img, (x1, y1), (x2, y2), (0, 255, 0), 3)
cv2.circle(img, absolute_center, 1, (255, 0, 255), 2)
Image.fromarray(img).show()
x1, y1, x2, y2 = bb + 60
# Pad image in case face is out of frame
padded_img = np.zeros(shape=(248, 248, 3), dtype=np.uint8)
padded_img[60:-60, 60:-60, :] = img
if debug:
cv2.rectangle(padded_img, (x1, y1), (x2, y2), (0, 255, 255), 3)
cv2.circle(padded_img, adjusted_absolute_center, 1, (255, 255, 255), 2)
Image.fromarray(padded_img).show()
y_len = abs(y1 - y2)
x_len = abs(x1 - x2)
new_len = (y_len + x_len) // 2
extension = int(new_len * extention_rate)
x_adjust = (x_len - new_len) // 2
y_adjust = (y_len - new_len) // 2
x_1_adjusted = x1 + x_adjust - extension
x_2_adjusted = x2 - x_adjust + extension
if mode == 'arcface':
y_1_adjusted = y1 - extension
y_2_adjusted = y2 - 2 * y_adjust + extension
else:
y_1_adjusted = y1 + 2 * y_adjust - extension
y_2_adjusted = y2 + extension
move_x = adjusted_absolute_center[0] - (x_1_adjusted + x_2_adjusted) // 2
move_y = adjusted_absolute_center[1] - (y_1_adjusted + y_2_adjusted) // 2
x_1_adjusted = x_1_adjusted + move_x
x_2_adjusted = x_2_adjusted + move_x
y_1_adjusted = y_1_adjusted + move_y
y_2_adjusted = y_2_adjusted + move_y
# print(y_1_adjusted, y_2_adjusted, x_1_adjusted, x_2_adjusted)
return padded_img[y_1_adjusted:y_2_adjusted, x_1_adjusted:x_2_adjusted]
def distance(a, b):
return np.sqrt((a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2)
def euclidean_distance(a, b):
x1 = a[0]; y1 = a[1]
x2 = b[0]; y2 = b[1]
return np.sqrt(((x2 - x1) * (x2 - x1)) + ((y2 - y1) * (y2 - y1)))
def align_face(img, landmarks, debug=False):
nose, right_eye, left_eye = landmarks
left_eye_x = left_eye[0]
left_eye_y = left_eye[1]
right_eye_x = right_eye[0]
right_eye_y = right_eye[1]
center_eye = ((left_eye[0] + right_eye[0]) // 2, (left_eye[1] + right_eye[1]) // 2)
if left_eye_y < right_eye_y:
point_3rd = (right_eye_x, left_eye_y)
direction = -1
else:
point_3rd = (left_eye_x, right_eye_y)
direction = 1
if debug:
cv2.circle(img, point_3rd, 1, (255, 0, 0), 1)
cv2.circle(img, center_eye, 1, (255, 0, 0), 1)
cv2.line(img, right_eye, left_eye, (0, 0, 0), 1)
cv2.line(img, left_eye, point_3rd, (0, 0, 0), 1)
cv2.line(img, right_eye, point_3rd, (0, 0, 0), 1)
a = euclidean_distance(left_eye, point_3rd)
b = euclidean_distance(right_eye, left_eye)
c = euclidean_distance(right_eye, point_3rd)
cos_a = (b * b + c * c - a * a) / (2 * b * c)
angle = np.arccos(cos_a)
angle = (angle * 180) / np.pi
if direction == -1:
angle = 90 - angle
ang = math.radians(direction * angle)
else:
ang = math.radians(direction * angle)
angle = 0 - angle
M = cv2.getRotationMatrix2D((64, 64), angle, 1)
new_img = cv2.warpAffine(img, M, (128, 128),
flags=cv2.INTER_CUBIC)
rotated_nose = (int((nose[0] - 64) * np.cos(ang) - (nose[1] - 64) * np.sin(ang) + 64),
int((nose[0] - 64) * np.sin(ang) + (nose[1] - 64) * np.cos(ang) + 64))
rotated_center_eye = (int((center_eye[0] - 64) * np.cos(ang) - (center_eye[1] - 64) * np.sin(ang) + 64),
int((center_eye[0] - 64) * np.sin(ang) + (center_eye[1] - 64) * np.cos(ang) + 64))
abolute_center = (rotated_center_eye[0], (rotated_nose[1] + rotated_center_eye[1]) // 2)
if debug:
cv2.circle(new_img, rotated_nose, 1, (0, 0, 255), 1)
cv2.circle(new_img, rotated_center_eye, 1, (0, 0, 255), 1)
cv2.circle(new_img, abolute_center, 1, (0, 0, 255), 1)
return new_img, abolute_center
def estimate_norm(lmk, image_size=112, mode='arcface', shrink_factor=1.0):
assert lmk.shape == (5, 2)
tform = trans.SimilarityTransform()
lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1)
min_M = []
min_index = []
min_error = float('inf')
src_factor = image_size / 112
if mode == 'arcface':
src = arcface_src * shrink_factor + (1 - shrink_factor) * 56
src = src * src_factor
else:
src = src_map[image_size] * src_factor
for i in np.arange(src.shape[0]):
tform.estimate(lmk, src[i])
M = tform.params[0:2, :]
results = np.dot(M, lmk_tran.T)
results = results.T
error = np.sum(np.sqrt(np.sum((results - src[i])**2, axis=1)))
# print(error)
if error < min_error:
min_error = error
min_M = M
min_index = i
return min_M, min_index
def inverse_estimate_norm(lmk, t_lmk, image_size=112, mode='arcface', shrink_factor=1.0):
assert lmk.shape == (5, 2)
tform = trans.SimilarityTransform()
lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1)
min_M = []
min_index = []
min_error = float('inf')
src_factor = image_size / 112
if mode == 'arcface':
src = arcface_src * shrink_factor + (1 - shrink_factor) * 56
src = src * src_factor
else:
src = src_map[image_size] * src_factor
for i in np.arange(src.shape[0]):
tform.estimate(t_lmk, lmk)
M = tform.params[0:2, :]
results = np.dot(M, lmk_tran.T)
results = results.T
error = np.sum(np.sqrt(np.sum((results - src[i])**2, axis=1)))
# print(error)
if error < min_error:
min_error = error
min_M = M
min_index = i
return min_M, min_index
def norm_crop(img, landmark, image_size=112, mode='arcface', shrink_factor=1.0):
"""
Align and crop the image based of the facial landmarks in the image. The alignment is done with
a similarity transformation based of source coordinates.
:param img: Image to transform.
:param landmark: Five landmark coordinates in the image.
:param image_size: Desired output size after transformation.
:param mode: 'arcface' aligns the face for the use of Arcface facial recognition model. Useful for
both facial recognition tasks and face swapping tasks.
:param shrink_factor: Shrink factor that shrinks the source landmark coordinates. This will include more border
information around the face. Useful when you want to include more background information when performing face swaps.
The lower the shrink factor the more of the face is included. Default value 1.0 will align the image to be ready
for the Arcface recognition model, but usually omits part of the chin. Value of 0.0 would transform all source points
to the middle of the image, probably rendering the alignment procedure useless.
If you process the image with a shrink factor of 0.85 and then want to extract the identity embedding with arcface,
you simply do a central crop of factor 0.85 to yield same cropped result as using shrink factor 1.0. This will
reduce the resolution, the recommendation is to processed images to output resolutions higher than 112 is using
Arcface. This will make sure no information is lost by resampling the image after central crop.
:return: Returns the transformed image.
"""
M, pose_index = estimate_norm(landmark, image_size, mode, shrink_factor=shrink_factor)
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0)
return warped
def transform_landmark_points(M, points):
lmk_tran = np.insert(points, 2, values=np.ones(5), axis=1)
transformed_lmk = np.dot(M, lmk_tran.T)
transformed_lmk = transformed_lmk.T
return transformed_lmk
def multi_convolver(image, kernel, iterations):
if kernel == "Sharpen":
kernel = np.array([[0, -1, 0],
[-1, 5, -1],
[0, -1, 0]])
elif kernel == "Unsharp_mask":
kernel = np.array([[1, 4, 6, 4, 1],
[4, 16, 24, 16, 1],
[6, 24, -476, 24, 1],
[4, 16, 24, 16, 1],
[1, 4, 6, 4, 1]]) * (-1 / 256)
elif kernel == "Blur":
kernel = (1 / 16.0) * np.array([[1., 2., 1.],
[2., 4., 2.],
[1., 2., 1.]])
for i in range(iterations):
image = convolve2d(image, kernel, 'same', boundary='fill', fillvalue = 0)
return image
def convolve_rgb(image, kernel, iterations=1):
img_yuv = rgb2yuv(image)
img_yuv[:, :, 0] = multi_convolver(img_yuv[:, :, 0], kernel,
iterations)
final_image = yuv2rgb(img_yuv)
return final_image.astype('float32')
def generate_mask_from_landmarks(lms, im_size):
blend_mask_lm = np.zeros(shape=(im_size, im_size, 3), dtype='float32')
# EYES
blend_mask_lm = cv2.circle(blend_mask_lm,
(int(lms[0][0]), int(lms[0][1])), 12, (255, 255, 255), 30)
blend_mask_lm = cv2.circle(blend_mask_lm,
(int(lms[1][0]), int(lms[1][1])), 12, (255, 255, 255), 30)
blend_mask_lm = cv2.circle(blend_mask_lm,
(int((lms[0][0] + lms[1][0]) / 2), int((lms[0][1] + lms[1][1]) / 2)),
16, (255, 255, 255), 65)
# NOSE
blend_mask_lm = cv2.circle(blend_mask_lm,
(int(lms[2][0]), int(lms[2][1])), 5, (255, 255, 255), 5)
blend_mask_lm = cv2.circle(blend_mask_lm,
(int((lms[0][0] + lms[1][0]) / 2), int(lms[2][1])), 16, (255, 255, 255), 100)
# MOUTH
blend_mask_lm = cv2.circle(blend_mask_lm,
(int(lms[3][0]), int(lms[3][1])), 6, (255, 255, 255), 30)
blend_mask_lm = cv2.circle(blend_mask_lm,
(int(lms[4][0]), int(lms[4][1])), 6, (255, 255, 255), 30)
blend_mask_lm = cv2.circle(blend_mask_lm,
(int((lms[3][0] + lms[4][0]) / 2), int((lms[3][1] + lms[4][1]) / 2)),
16, (255, 255, 255), 40)
return blend_mask_lm
def display_distance_text(im, distance, lms, im_w, im_h, scale=2):
blended_insert = cv2.putText(im, str(distance)[:4],
(int(lms[4] * im_w * 0.5), int(lms[5] * im_h * 0.8)),
cv2.FONT_HERSHEY_SIMPLEX, scale * 0.5, (0.08, 0.16, 0.08), int(scale * 2))
blended_insert = cv2.putText(blended_insert, str(distance)[:4],
(int(lms[4] * im_w * 0.5), int(lms[5] * im_h * 0.8)),
cv2.FONT_HERSHEY_SIMPLEX, scale* 0.5, (0.3, 0.7, 0.32), int(scale * 1))
return blended_insert
def get_lm(annotation, im_w, im_h):
lm_align = np.array([[annotation[4] * im_w, annotation[5] * im_h],
[annotation[6] * im_w, annotation[7] * im_h],
[annotation[8] * im_w, annotation[9] * im_h],
[annotation[10] * im_w, annotation[11] * im_h],
[annotation[12] * im_w, annotation[13] * im_h]],
dtype=np.float32)
return lm_align
|