|
import tensorflow as tf |
|
from tensorflow.keras.layers import Layer, Dense |
|
|
|
|
|
def sin_activation(x, omega=30): |
|
return tf.math.sin(omega * x) |
|
|
|
|
|
class AdaIN(Layer): |
|
def __init__(self, **kwargs): |
|
super(AdaIN, self).__init__(**kwargs) |
|
|
|
def build(self, input_shapes): |
|
x_shape = input_shapes[0] |
|
w_shape = input_shapes[1] |
|
|
|
self.w_channels = w_shape[-1] |
|
self.x_channels = x_shape[-1] |
|
|
|
self.dense_1 = Dense(self.x_channels) |
|
self.dense_2 = Dense(self.x_channels) |
|
|
|
def call(self, inputs): |
|
x, w = inputs |
|
ys = tf.reshape(self.dense_1(w), (-1, 1, 1, self.x_channels)) |
|
yb = tf.reshape(self.dense_2(w), (-1, 1, 1, self.x_channels)) |
|
return ys * x + yb |
|
|
|
def get_config(self): |
|
config = { |
|
|
|
|
|
} |
|
base_config = super(AdaIN, self).get_config() |
|
return dict(list(base_config.items()) + list(config.items())) |
|
|
|
|
|
class AdaptiveAttention(Layer): |
|
|
|
def __init__(self, **kwargs): |
|
super(AdaptiveAttention, self).__init__(**kwargs) |
|
|
|
def call(self, inputs): |
|
m, a, i = inputs |
|
return (1 - m) * a + m * i |
|
|
|
def get_config(self): |
|
base_config = super(AdaptiveAttention, self).get_config() |
|
return base_config |
|
|