Create retinaface/anchor.py
Browse files- retinaface/anchor.py +296 -0
retinaface/anchor.py
ADDED
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Anchor utils modified from https://github.com/biubug6/Pytorch_Retinaface"""
|
2 |
+
import math
|
3 |
+
import tensorflow as tf
|
4 |
+
import numpy as np
|
5 |
+
from itertools import product as product
|
6 |
+
|
7 |
+
|
8 |
+
###############################################################################
|
9 |
+
# Tensorflow / Numpy Priors #
|
10 |
+
###############################################################################
|
11 |
+
def prior_box(image_sizes, min_sizes, steps, clip=False):
|
12 |
+
"""prior box"""
|
13 |
+
feature_maps = [
|
14 |
+
[math.ceil(image_sizes[0] / step), math.ceil(image_sizes[1] / step)]
|
15 |
+
for step in steps]
|
16 |
+
|
17 |
+
anchors = []
|
18 |
+
for k, f in enumerate(feature_maps):
|
19 |
+
for i, j in product(range(f[0]), range(f[1])):
|
20 |
+
for min_size in min_sizes[k]:
|
21 |
+
s_kx = min_size / image_sizes[1]
|
22 |
+
s_ky = min_size / image_sizes[0]
|
23 |
+
cx = (j + 0.5) * steps[k] / image_sizes[1]
|
24 |
+
cy = (i + 0.5) * steps[k] / image_sizes[0]
|
25 |
+
anchors += [cx, cy, s_kx, s_ky]
|
26 |
+
|
27 |
+
output = np.asarray(anchors).reshape([-1, 4])
|
28 |
+
|
29 |
+
if clip:
|
30 |
+
output = np.clip(output, 0, 1)
|
31 |
+
|
32 |
+
return output
|
33 |
+
|
34 |
+
|
35 |
+
def prior_box_tf(image_sizes, min_sizes, steps, clip=False):
|
36 |
+
"""prior box"""
|
37 |
+
image_sizes = tf.cast(tf.convert_to_tensor(image_sizes), tf.float32)
|
38 |
+
feature_maps = tf.math.ceil(
|
39 |
+
tf.reshape(image_sizes, [1, 2]) /
|
40 |
+
tf.reshape(tf.cast(steps, tf.float32), [-1, 1]))
|
41 |
+
|
42 |
+
anchors = []
|
43 |
+
for k in range(len(min_sizes)):
|
44 |
+
grid_x, grid_y = _meshgrid_tf(tf.range(feature_maps[k][1]),
|
45 |
+
tf.range(feature_maps[k][0]))
|
46 |
+
cx = (grid_x + 0.5) * steps[k] / image_sizes[1]
|
47 |
+
cy = (grid_y + 0.5) * steps[k] / image_sizes[0]
|
48 |
+
cxcy = tf.stack([cx, cy], axis=-1)
|
49 |
+
cxcy = tf.reshape(cxcy, [-1, 2])
|
50 |
+
cxcy = tf.repeat(cxcy, repeats=tf.shape(min_sizes[k])[0], axis=0)
|
51 |
+
|
52 |
+
sx = min_sizes[k] / image_sizes[1]
|
53 |
+
sy = min_sizes[k] / image_sizes[0]
|
54 |
+
sxsy = tf.stack([sx, sy], 1)
|
55 |
+
sxsy = tf.repeat(sxsy[tf.newaxis],
|
56 |
+
repeats=tf.shape(grid_x)[0] * tf.shape(grid_x)[1],
|
57 |
+
axis=0)
|
58 |
+
sxsy = tf.reshape(sxsy, [-1, 2])
|
59 |
+
|
60 |
+
anchors.append(tf.concat([cxcy, sxsy], 1))
|
61 |
+
|
62 |
+
output = tf.concat(anchors, axis=0)
|
63 |
+
|
64 |
+
if clip:
|
65 |
+
output = tf.clip_by_value(output, 0, 1)
|
66 |
+
|
67 |
+
return output
|
68 |
+
|
69 |
+
|
70 |
+
def _meshgrid_tf(x, y):
|
71 |
+
""" workaround solution of the tf.meshgrid() issue:
|
72 |
+
https://github.com/tensorflow/tensorflow/issues/34470"""
|
73 |
+
grid_shape = [tf.shape(y)[0], tf.shape(x)[0]]
|
74 |
+
grid_x = tf.broadcast_to(tf.reshape(x, [1, -1]), grid_shape)
|
75 |
+
grid_y = tf.broadcast_to(tf.reshape(y, [-1, 1]), grid_shape)
|
76 |
+
return grid_x, grid_y
|
77 |
+
|
78 |
+
|
79 |
+
###############################################################################
|
80 |
+
# Tensorflow Encoding #
|
81 |
+
###############################################################################
|
82 |
+
def encode_tf(labels, priors, match_thresh, ignore_thresh,
|
83 |
+
variances=[0.1, 0.2]):
|
84 |
+
"""tensorflow encoding"""
|
85 |
+
assert ignore_thresh <= match_thresh
|
86 |
+
priors = tf.cast(priors, tf.float32)
|
87 |
+
bbox = labels[:, :4]
|
88 |
+
landm = labels[:, 4:-1]
|
89 |
+
landm_valid = labels[:, -1] # 1: with landm, 0: w/o landm.
|
90 |
+
|
91 |
+
# jaccard index
|
92 |
+
overlaps = _jaccard(bbox, _point_form(priors))
|
93 |
+
|
94 |
+
# (Bipartite Matching)
|
95 |
+
# [num_objects] best prior for each ground truth
|
96 |
+
best_prior_overlap, best_prior_idx = tf.math.top_k(overlaps, k=1)
|
97 |
+
best_prior_overlap = best_prior_overlap[:, 0]
|
98 |
+
best_prior_idx = best_prior_idx[:, 0]
|
99 |
+
|
100 |
+
# [num_priors] best ground truth for each prior
|
101 |
+
overlaps_t = tf.transpose(overlaps)
|
102 |
+
best_truth_overlap, best_truth_idx = tf.math.top_k(overlaps_t, k=1)
|
103 |
+
best_truth_overlap = best_truth_overlap[:, 0]
|
104 |
+
best_truth_idx = best_truth_idx[:, 0]
|
105 |
+
|
106 |
+
# ensure best prior
|
107 |
+
def _loop_body(i, bt_idx, bt_overlap):
|
108 |
+
bp_mask = tf.one_hot(best_prior_idx[i], tf.shape(bt_idx)[0])
|
109 |
+
bp_mask_int = tf.cast(bp_mask, tf.int32)
|
110 |
+
new_bt_idx = bt_idx * (1 - bp_mask_int) + bp_mask_int * i
|
111 |
+
bp_mask_float = tf.cast(bp_mask, tf.float32)
|
112 |
+
new_bt_overlap = bt_overlap * (1 - bp_mask_float) + bp_mask_float * 2
|
113 |
+
return tf.cond(best_prior_overlap[i] > match_thresh,
|
114 |
+
lambda: (i + 1, new_bt_idx, new_bt_overlap),
|
115 |
+
lambda: (i + 1, bt_idx, bt_overlap))
|
116 |
+
_, best_truth_idx, best_truth_overlap = tf.while_loop(
|
117 |
+
lambda i, bt_idx, bt_overlap: tf.less(i, tf.shape(best_prior_idx)[0]),
|
118 |
+
_loop_body, [tf.constant(0), best_truth_idx, best_truth_overlap])
|
119 |
+
|
120 |
+
matches_bbox = tf.gather(bbox, best_truth_idx) # [num_priors, 4]
|
121 |
+
matches_landm = tf.gather(landm, best_truth_idx) # [num_priors, 10]
|
122 |
+
matches_landm_v = tf.gather(landm_valid, best_truth_idx) # [num_priors]
|
123 |
+
|
124 |
+
loc_t = _encode_bbox(matches_bbox, priors, variances)
|
125 |
+
landm_t = _encode_landm(matches_landm, priors, variances)
|
126 |
+
landm_valid_t = tf.cast(matches_landm_v > 0, tf.float32)
|
127 |
+
conf_t = tf.cast(best_truth_overlap > match_thresh, tf.float32)
|
128 |
+
conf_t = tf.where(
|
129 |
+
tf.logical_and(best_truth_overlap < match_thresh,
|
130 |
+
best_truth_overlap > ignore_thresh),
|
131 |
+
tf.ones_like(conf_t) * -1, conf_t) # 1: pos, 0: neg, -1: ignore
|
132 |
+
|
133 |
+
return tf.concat([loc_t, landm_t, landm_valid_t[..., tf.newaxis],
|
134 |
+
conf_t[..., tf.newaxis]], axis=1)
|
135 |
+
|
136 |
+
|
137 |
+
def _encode_bbox(matched, priors, variances):
|
138 |
+
"""Encode the variances from the priorbox layers into the ground truth
|
139 |
+
boxes we have matched (based on jaccard overlap) with the prior boxes.
|
140 |
+
Args:
|
141 |
+
matched: (tensor) Coords of ground truth for each prior in point-form
|
142 |
+
Shape: [num_priors, 4].
|
143 |
+
priors: (tensor) Prior boxes in center-offset form
|
144 |
+
Shape: [num_priors,4].
|
145 |
+
variances: (list[float]) Variances of priorboxes
|
146 |
+
Return:
|
147 |
+
encoded boxes (tensor), Shape: [num_priors, 4]
|
148 |
+
"""
|
149 |
+
|
150 |
+
# dist b/t match center and prior's center
|
151 |
+
g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2 - priors[:, :2]
|
152 |
+
# encode variance
|
153 |
+
g_cxcy /= (variances[0] * priors[:, 2:])
|
154 |
+
# match wh / prior wh
|
155 |
+
g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:]
|
156 |
+
g_wh = tf.math.log(g_wh) / variances[1]
|
157 |
+
# return target for smooth_l1_loss
|
158 |
+
return tf.concat([g_cxcy, g_wh], 1) # [num_priors,4]
|
159 |
+
|
160 |
+
|
161 |
+
def _encode_landm(matched, priors, variances):
|
162 |
+
"""Encode the variances from the priorbox layers into the ground truth
|
163 |
+
boxes we have matched (based on jaccard overlap) with the prior boxes.
|
164 |
+
Args:
|
165 |
+
matched: (tensor) Coords of ground truth for each prior in point-form
|
166 |
+
Shape: [num_priors, 10].
|
167 |
+
priors: (tensor) Prior boxes in center-offset form
|
168 |
+
Shape: [num_priors,4].
|
169 |
+
variances: (list[float]) Variances of priorboxes
|
170 |
+
Return:
|
171 |
+
encoded landm (tensor), Shape: [num_priors, 10]
|
172 |
+
"""
|
173 |
+
|
174 |
+
# dist b/t match center and prior's center
|
175 |
+
matched = tf.reshape(matched, [tf.shape(matched)[0], 5, 2])
|
176 |
+
priors = tf.broadcast_to(
|
177 |
+
tf.expand_dims(priors, 1), [tf.shape(matched)[0], 5, 4])
|
178 |
+
g_cxcy = matched[:, :, :2] - priors[:, :, :2]
|
179 |
+
# encode variance
|
180 |
+
g_cxcy /= (variances[0] * priors[:, :, 2:])
|
181 |
+
# g_cxcy /= priors[:, :, 2:]
|
182 |
+
g_cxcy = tf.reshape(g_cxcy, [tf.shape(g_cxcy)[0], -1])
|
183 |
+
# return target for smooth_l1_loss
|
184 |
+
return g_cxcy
|
185 |
+
|
186 |
+
|
187 |
+
def _point_form(boxes):
|
188 |
+
""" Convert prior_boxes to (xmin, ymin, xmax, ymax)
|
189 |
+
representation for comparison to point form ground truth data.
|
190 |
+
Args:
|
191 |
+
boxes: (tensor) center-size default boxes from priorbox layers.
|
192 |
+
Return:
|
193 |
+
boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.
|
194 |
+
"""
|
195 |
+
return tf.concat((boxes[:, :2] - boxes[:, 2:] / 2,
|
196 |
+
boxes[:, :2] + boxes[:, 2:] / 2), axis=1)
|
197 |
+
|
198 |
+
|
199 |
+
def _intersect(box_a, box_b):
|
200 |
+
""" We resize both tensors to [A,B,2]:
|
201 |
+
[A,2] -> [A,1,2] -> [A,B,2]
|
202 |
+
[B,2] -> [1,B,2] -> [A,B,2]
|
203 |
+
Then we compute the area of intersect between box_a and box_b.
|
204 |
+
Args:
|
205 |
+
box_a: (tensor) bounding boxes, Shape: [A,4].
|
206 |
+
box_b: (tensor) bounding boxes, Shape: [B,4].
|
207 |
+
Return:
|
208 |
+
(tensor) intersection area, Shape: [A,B].
|
209 |
+
"""
|
210 |
+
A = tf.shape(box_a)[0]
|
211 |
+
B = tf.shape(box_b)[0]
|
212 |
+
max_xy = tf.minimum(
|
213 |
+
tf.broadcast_to(tf.expand_dims(box_a[:, 2:], 1), [A, B, 2]),
|
214 |
+
tf.broadcast_to(tf.expand_dims(box_b[:, 2:], 0), [A, B, 2]))
|
215 |
+
min_xy = tf.maximum(
|
216 |
+
tf.broadcast_to(tf.expand_dims(box_a[:, :2], 1), [A, B, 2]),
|
217 |
+
tf.broadcast_to(tf.expand_dims(box_b[:, :2], 0), [A, B, 2]))
|
218 |
+
inter = tf.maximum((max_xy - min_xy), tf.zeros_like(max_xy - min_xy))
|
219 |
+
return inter[:, :, 0] * inter[:, :, 1]
|
220 |
+
|
221 |
+
|
222 |
+
def _jaccard(box_a, box_b):
|
223 |
+
"""Compute the jaccard overlap of two sets of boxes. The jaccard overlap
|
224 |
+
is simply the intersection over union of two boxes. Here we operate on
|
225 |
+
ground truth boxes and default boxes.
|
226 |
+
E.g.:
|
227 |
+
A β© B / A βͺ B = A β© B / (area(A) + area(B) - A β© B)
|
228 |
+
Args:
|
229 |
+
box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4]
|
230 |
+
box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,4]
|
231 |
+
Return:
|
232 |
+
jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)]
|
233 |
+
"""
|
234 |
+
inter = _intersect(box_a, box_b)
|
235 |
+
area_a = tf.broadcast_to(
|
236 |
+
tf.expand_dims(
|
237 |
+
(box_a[:, 2] - box_a[:, 0]) * (box_a[:, 3] - box_a[:, 1]), 1),
|
238 |
+
tf.shape(inter)) # [A,B]
|
239 |
+
area_b = tf.broadcast_to(
|
240 |
+
tf.expand_dims(
|
241 |
+
(box_b[:, 2] - box_b[:, 0]) * (box_b[:, 3] - box_b[:, 1]), 0),
|
242 |
+
tf.shape(inter)) # [A,B]
|
243 |
+
union = area_a + area_b - inter
|
244 |
+
return inter / union # [A,B]
|
245 |
+
|
246 |
+
|
247 |
+
###############################################################################
|
248 |
+
# Tensorflow Decoding #
|
249 |
+
###############################################################################
|
250 |
+
def decode_tf(labels, priors, variances=[0.1, 0.2]):
|
251 |
+
"""tensorflow decoding"""
|
252 |
+
bbox = _decode_bbox(labels[:, :4], priors, variances)
|
253 |
+
landm = _decode_landm(labels[:, 4:14], priors, variances)
|
254 |
+
landm_valid = labels[:, 14][:, tf.newaxis]
|
255 |
+
conf = labels[:, 15][:, tf.newaxis]
|
256 |
+
|
257 |
+
return tf.concat([bbox, landm, landm_valid, conf], axis=1)
|
258 |
+
|
259 |
+
|
260 |
+
def _decode_bbox(pre, priors, variances=[0.1, 0.2]):
|
261 |
+
"""Decode locations from predictions using priors to undo
|
262 |
+
the encoding we did for offset regression at train time.
|
263 |
+
Args:
|
264 |
+
pre (tensor): location predictions for loc layers,
|
265 |
+
Shape: [num_priors,4]
|
266 |
+
priors (tensor): Prior boxes in center-offset form.
|
267 |
+
Shape: [num_priors,4].
|
268 |
+
variances: (list[float]) Variances of priorboxes
|
269 |
+
Return:
|
270 |
+
decoded bounding box predictions
|
271 |
+
"""
|
272 |
+
centers = priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:]
|
273 |
+
sides = priors[:, 2:] * tf.math.exp(pre[:, 2:] * variances[1])
|
274 |
+
|
275 |
+
return tf.concat([centers - sides / 2, centers + sides / 2], axis=1)
|
276 |
+
|
277 |
+
|
278 |
+
def _decode_landm(pre, priors, variances=[0.1, 0.2]):
|
279 |
+
"""Decode landm from predictions using priors to undo
|
280 |
+
the encoding we did for offset regression at train time.
|
281 |
+
Args:
|
282 |
+
pre (tensor): landm predictions for loc layers,
|
283 |
+
Shape: [num_priors,10]
|
284 |
+
priors (tensor): Prior boxes in center-offset form.
|
285 |
+
Shape: [num_priors,4].
|
286 |
+
variances: (list[float]) Variances of priorboxes
|
287 |
+
Return:
|
288 |
+
decoded landm predictions
|
289 |
+
"""
|
290 |
+
landms = tf.concat(
|
291 |
+
[priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:],
|
292 |
+
priors[:, :2] + pre[:, 2:4] * variances[0] * priors[:, 2:],
|
293 |
+
priors[:, :2] + pre[:, 4:6] * variances[0] * priors[:, 2:],
|
294 |
+
priors[:, :2] + pre[:, 6:8] * variances[0] * priors[:, 2:],
|
295 |
+
priors[:, :2] + pre[:, 8:10] * variances[0] * priors[:, 2:]], axis=1)
|
296 |
+
return landms
|