Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pymupdf4llm | |
import pandas as pd | |
from groq import Groq | |
import json | |
import tempfile | |
from sklearn.model_selection import train_test_split | |
# Initialize session state variables if they don't exist | |
if 'train_df' not in st.session_state: | |
st.session_state.train_df = None | |
if 'val_df' not in st.session_state: | |
st.session_state.val_df = None | |
if 'generated' not in st.session_state: | |
st.session_state.generated = False | |
if 'previous_upload_state' not in st.session_state: | |
st.session_state.previous_upload_state = False | |
def reset_session_state(): | |
"""Reset all relevant session state variables""" | |
st.session_state.train_df = None | |
st.session_state.val_df = None | |
st.session_state.generated = False | |
def parse_pdf(uploaded_file) -> str: | |
with tempfile.NamedTemporaryFile(delete=False) as tmp_file: | |
tmp_file.write(uploaded_file.getvalue()) | |
tmp_file.seek(0) | |
text = pymupdf4llm.to_markdown(tmp_file.name) | |
return text | |
def generate_qa_pairs(text: str, api_key: str, model: str, num_pairs: int, context: str) -> pd.DataFrame: | |
client = Groq(api_key=api_key) | |
prompt = f""" | |
Given the following text, generate {num_pairs} question-answer pairs: | |
{text} | |
Format each pair as: | |
Q: [Question] | |
A: [Answer] | |
Ensure the questions are diverse and cover different aspects of the text. | |
""" | |
try: | |
response = client.chat.completions.create( | |
model=model, | |
messages=[ | |
{"role": "system", "content": "You are a helpful assistant that generates question-answer pairs based on given text."}, | |
{"role": "user", "content": prompt} | |
] | |
) | |
qa_text = response.choices[0].message.content | |
qa_pairs = [] | |
for pair in qa_text.split('\n\n'): | |
if pair.startswith('Q:') and 'A:' in pair: | |
question, answer = pair.split('A:') | |
question = question.replace('Q:', '').strip() | |
answer = answer.strip() | |
qa_pairs.append({ | |
'Question': question, | |
'Answer': answer, | |
'Context': context | |
}) | |
return pd.DataFrame(qa_pairs) | |
except Exception as e: | |
st.error(f"Error generating QA pairs: {str(e)}") | |
return pd.DataFrame() | |
def create_jsonl_content(df: pd.DataFrame, system_content: str) -> str: | |
"""Convert DataFrame to JSONL string content""" | |
jsonl_content = [] | |
for _, row in df.iterrows(): | |
entry = { | |
"messages": [ | |
{"role": "system", "content": system_content}, | |
{"role": "user", "content": row['Question']}, | |
{"role": "assistant", "content": row['Answer']} | |
] | |
} | |
jsonl_content.append(json.dumps(entry, ensure_ascii=False)) | |
return '\n'.join(jsonl_content) | |
def process_and_split_data(text: str, api_key: str, model: str, num_pairs: int, context: str, train_size: float): | |
"""Process data and store results in session state""" | |
df = generate_qa_pairs(text, api_key, model, num_pairs, context) | |
if not df.empty: | |
# Split the dataset | |
train_df, val_df = train_test_split( | |
df, | |
train_size=train_size/100, | |
random_state=42 | |
) | |
# Store in session state | |
st.session_state.train_df = train_df | |
st.session_state.val_df = val_df | |
st.session_state.generated = True | |
return True | |
return False | |
def main(): | |
st.title("LLM Dataset Generator") | |
st.write("Upload a PDF file and generate training & validation sets of question-answer pairs of your data using LLM.") | |
# Sidebar configurations | |
st.sidebar.header("Configuration") | |
api_key = st.sidebar.text_input("Enter Groq API Key", type="password") | |
model = st.sidebar.selectbox( | |
"Select Model", | |
["llama3-8b-8192", "llama3-70b-8192", "mixtral-8x7b-32768", "gemma2-9b-it"] | |
) | |
num_pairs = st.sidebar.number_input( | |
"Number of QA Pairs", | |
min_value=1, | |
max_value=10000, | |
value=5 | |
) | |
context = st.sidebar.text_area( | |
"Custom Context", | |
value="Write a response that appropriately completes the request.", | |
help="This text will be added to the Context column for each QA pair.", | |
placeholder= "Add custom context here." | |
) | |
# Dataset split configuration | |
st.sidebar.header("Dataset Split") | |
train_size = st.sidebar.slider( | |
"Training Set Size (%)", | |
min_value=50, | |
max_value=90, | |
value=80, | |
step=5 | |
) | |
# Output format configuration | |
st.sidebar.header("Output Format") | |
output_format = st.sidebar.selectbox( | |
"Select Output Format", | |
["CSV", "JSONL"] | |
) | |
if output_format == "JSONL": | |
system_content = st.sidebar.text_area( | |
"System Message", | |
value="You are a helpful assistant that provides accurate and informative answers.", | |
help="This message will be used as the system content in the JSONL format." | |
) | |
# Main area | |
uploaded_file = st.file_uploader("Choose a PDF file", type="pdf") | |
# Check if upload state has changed | |
current_upload_state = uploaded_file is not None | |
if current_upload_state != st.session_state.previous_upload_state: | |
if not current_upload_state: # File was removed | |
reset_session_state() | |
st.session_state.previous_upload_state = current_upload_state | |
if uploaded_file is not None: | |
if not api_key: | |
st.warning("Please enter your Groq API key in the sidebar.") | |
return | |
text = parse_pdf(uploaded_file) | |
st.success("PDF processed successfully!") | |
if st.button("Generate QA Pairs"): | |
with st.spinner("Generating QA pairs..."): | |
success = process_and_split_data(text, api_key, model, num_pairs, context, train_size) | |
if success: | |
st.success("QA pairs generated successfully!") | |
# Display results if data has been generated | |
if st.session_state.generated and st.session_state.train_df is not None and st.session_state.val_df is not None: | |
# Display the dataframes | |
st.subheader("Training Set") | |
st.dataframe(st.session_state.train_df) | |
st.subheader("Validation Set") | |
st.dataframe(st.session_state.val_df) | |
# Create download section | |
st.subheader("Download Generated Datasets") | |
col1, col2 = st.columns(2) | |
with col1: | |
st.markdown("##### Training Set") | |
if output_format == "CSV": | |
train_csv = st.session_state.train_df.to_csv(index=False) | |
st.download_button( | |
label="Download Training Set (CSV)", | |
data=train_csv, | |
file_name="train_qa_pairs.csv", | |
mime="text/csv", | |
key="train_csv" | |
) | |
else: # JSONL format | |
train_jsonl = create_jsonl_content(st.session_state.train_df, system_content) | |
st.download_button( | |
label="Download Training Set (JSONL)", | |
data=train_jsonl, | |
file_name="train_qa_pairs.jsonl", | |
mime="application/jsonl", | |
key="train_jsonl" | |
) | |
with col2: | |
st.markdown("##### Validation Set") | |
if output_format == "CSV": | |
val_csv = st.session_state.val_df.to_csv(index=False) | |
st.download_button( | |
label="Download Validation Set (CSV)", | |
data=val_csv, | |
file_name="val_qa_pairs.csv", | |
mime="text/csv", | |
key="val_csv" | |
) | |
else: # JSONL format | |
val_jsonl = create_jsonl_content(st.session_state.val_df, system_content) | |
st.download_button( | |
label="Download Validation Set (JSONL)", | |
data=val_jsonl, | |
file_name="val_qa_pairs.jsonl", | |
mime="application/jsonl", | |
key="val_jsonl" | |
) | |
# Display statistics | |
st.subheader("Statistics") | |
st.write(f"Total QA pairs: {len(st.session_state.train_df) + len(st.session_state.val_df)}") | |
st.write(f"Training set size: {len(st.session_state.train_df)} ({train_size}%)") | |
st.write(f"Validation set size: {len(st.session_state.val_df)} ({100-train_size}%)") | |
st.write(f"Average question length: {st.session_state.train_df['Question'].str.len().mean():.1f} characters") | |
st.write(f"Average answer length: {st.session_state.train_df['Answer'].str.len().mean():.1f} characters") | |
if __name__ == "__main__": | |
st.set_page_config( | |
page_title="LLM Dataset Generator", | |
page_icon="π", | |
layout="wide" | |
) | |
main() |