|
import streamlit as st |
|
from transformers import pipeline |
|
from PIL import Image |
|
|
|
model_path = "abhisheky127/FeedbackSummarizerEnterpret" |
|
|
|
summarizer = pipeline("summarization", model=model_path) |
|
|
|
def postprocess(prediction, input): |
|
if len(input.split(" "))<5: |
|
return("None") |
|
else: |
|
return(prediction.split('.')[0]+".") |
|
|
|
st.title("Feedback Summarizer: Enterpret") |
|
st.markdown( |
|
""" |
|
#### Summarize reviews/feedbacks with fine-tuned T5-small language Model |
|
> *powered by Hugging Face T5, Streamlit* |
|
|
|
""" |
|
) |
|
st.image("Screenshot 2023-06-25 at 11.49.26 PM.png") |
|
st.markdown("----") |
|
|
|
product = st.text_input('Product', '') |
|
|
|
type = st.text_input('Record Type', '') |
|
|
|
text = st.text_area('Text to Summarize', '''''') |
|
|
|
if st.button('Summarize'): |
|
if len(product) and len(type) and len(text): |
|
with st.spinner( |
|
"Summarizing your feedback : `{}` ".format(text) |
|
): |
|
text = "<product>{}</product><type>{}</type><text>{}</text>".format(product, type, text) |
|
|
|
res = summarizer(text)[0]["summary_text"] |
|
res = post_process(res, text) |
|
st.info(res, icon="π€") |
|
else: |
|
st.write('I think something is missing, please check your inputs!') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
st.markdown("----") |
|
st.image("Screenshot 2022-11-20 at 5.40.54 AM.png") |
|
|
|
|